論文の概要: T Cell Receptor Protein Sequences and Sparse Coding: A Novel Approach to
Cancer Classification
- arxiv url: http://arxiv.org/abs/2304.13145v1
- Date: Tue, 25 Apr 2023 20:43:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 16:23:08.242284
- Title: T Cell Receptor Protein Sequences and Sparse Coding: A Novel Approach to
Cancer Classification
- Title(参考訳): t細胞受容体タンパク質配列とスパースコード : 癌分類への新しいアプローチ
- Authors: Zahra Tayebi, Sarwan Ali, Prakash Chourasia, Taslim Murad and Murray
Patterson
- Abstract要約: T細胞受容体(TCR)は、適応免疫系に必須のタンパク質である。
近年のシークエンシング技術の進歩により、TCRレパートリーの包括的なプロファイリングが可能になった。
これにより、強力な抗がん活性を持つTCRの発見とTCRベースの免疫療法の開発につながった。
- 参考スコア(独自算出の注目度): 0.7874708385247353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer is a complex disease characterized by uncontrolled cell growth and
proliferation. T cell receptors (TCRs) are essential proteins for the adaptive
immune system, and their specific recognition of antigens plays a crucial role
in the immune response against diseases, including cancer. The diversity and
specificity of TCRs make them ideal for targeting cancer cells, and recent
advancements in sequencing technologies have enabled the comprehensive
profiling of TCR repertoires. This has led to the discovery of TCRs with potent
anti-cancer activity and the development of TCR-based immunotherapies. In this
study, we investigate the use of sparse coding for the multi-class
classification of TCR protein sequences with cancer categories as target
labels. Sparse coding is a popular technique in machine learning that enables
the representation of data with a set of informative features and can capture
complex relationships between amino acids and identify subtle patterns in the
sequence that might be missed by low-dimensional methods. We first compute the
k-mers from the TCR sequences and then apply sparse coding to capture the
essential features of the data. To improve the predictive performance of the
final embeddings, we integrate domain knowledge regarding different types of
cancer properties. We then train different machine learning (linear and
non-linear) classifiers on the embeddings of TCR sequences for the purpose of
supervised analysis. Our proposed embedding method on a benchmark dataset of
TCR sequences significantly outperforms the baselines in terms of predictive
performance, achieving an accuracy of 99.8\%. Our study highlights the
potential of sparse coding for the analysis of TCR protein sequences in cancer
research and other related fields.
- Abstract(参考訳): 癌は、制御不能な細胞増殖と増殖を特徴とする複雑な疾患である。
T細胞受容体(TCR)は、適応免疫系に必須のタンパク質であり、抗原の特異的認識は、がんを含む疾患に対する免疫応答において重要な役割を果たす。
TCRの多様性と特異性は、がん細胞をターゲットにするのに理想的であり、シークエンシング技術の最近の進歩は、TCRレパートリーの包括的なプロファイリングを可能にしている。
これにより、強力な抗がん活性を持つTCRの発見とTCRベースの免疫療法の開発につながった。
本研究では,癌分類を対象とするTCRタンパク質配列のマルチクラス分類におけるスパース符号の利用について検討した。
スパースコーディングは、一連の情報的特徴を持つデータの表現を可能にし、アミノ酸間の複雑な関係を捉え、低次元の方法で見逃される可能性のあるシーケンス内の微妙なパターンを識別できる機械学習の一般的なテクニックである。
まず、TCRシーケンスからk-merを計算し、次にスパース符号化を適用してデータの本質的な特徴を捉える。
最終埋め込みの予測性能を向上させるため,各種類のがん特性に関するドメイン知識を統合する。
次に,教師付き解析のためにtcr系列の埋め込みについて,異なる機械学習(線形および非線形)分類器を訓練する。
提案手法は,TCRシーケンスのベンチマークデータセットへの埋め込みにより,予測性能においてベースラインを著しく上回り,99.8\%の精度を実現する。
本研究は癌研究や他の関連分野におけるTCRタンパク質配列の解析におけるスパースコーディングの可能性を明らかにするものである。
関連論文リスト
- DANCE: Deep Learning-Assisted Analysis of Protein Sequences Using Chaos Enhanced Kaleidoscopic Images [4.824821328103934]
癌は、制御不能な細胞増殖を特徴とする複雑な疾患である。
T細胞受容体(TCR)は、癌に関連する抗原の認識において重要な役割を担っている。
近年のシークエンシング技術の進歩は、TCRレパートリーの包括的なプロファイリングを促進している。
論文 参考訳(メタデータ) (2024-09-10T17:55:59Z) - Pan-cancer gene set discovery via scRNA-seq for optimal deep learning based downstream tasks [6.869831177092736]
腫瘍生検181例のscRNA-seqデータを13種類の癌で解析した。
高次元重み付き遺伝子共発現ネットワーク解析(hdWGCNA)を行い、関連遺伝子群を同定した。
多層パーセプトロン(MLP)やグラフニューラルネットワーク(GNN)を含むディープラーニングモデルを用いたOncoKBのオンコジーンの評価
論文 参考訳(メタデータ) (2024-08-13T23:24:36Z) - TCR-GPT: Integrating Autoregressive Model and Reinforcement Learning for T-Cell Receptor Repertoires Generation [6.920411338236452]
T細胞受容体(TCR)は、感染またはがん細胞によって提示される特定の抗原を認識し、結合することによって免疫系において重要な役割を担っている。
自動回帰変換器のような言語モデルは、TCRレパートリーの確率分布を学習することで強力な解を提供する。
本稿では,デコーダのみのトランスアーキテクチャ上に構築された確率モデルTCR-GPTを紹介する。
論文 参考訳(メタデータ) (2024-08-02T10:16:28Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Multiple Instance Neural Networks Based on Sparse Attention for Cancer
Detection using T-cell Receptor Sequences [10.199698726118003]
本稿では,スパースアテンション(MINN-SA)に基づく複数インスタンスニューラルネットワークを提案する。
MINN-SAは10種類の癌で測定された平均値において、ROC曲線(AUC)値が最も高い。
論文 参考訳(メタデータ) (2022-08-09T03:24:03Z) - TCR: A Transformer Based Deep Network for Predicting Cancer Drugs
Response [12.86640026993276]
抗がん剤反応を予測するために,トランスフォーマーを用いたがん薬物応答(TCR)ネットワークを提案する。
注意機構を利用することで、TCRは薬物原子/サブ構造と分子シグネチャの相互作用を効率的に学習することができる。
本研究は,TCRの予測能力と癌薬物の再利用と腫瘍学の精度向上に寄与する可能性を明らかにするものである。
論文 参考訳(メタデータ) (2022-07-10T13:01:54Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。