論文の概要: Dynamic Datasets and Market Environments for Financial Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2304.13174v1
- Date: Tue, 25 Apr 2023 22:17:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 16:15:24.758123
- Title: Dynamic Datasets and Market Environments for Financial Reinforcement
Learning
- Title(参考訳): 金融強化学習のための動的データセットと市場環境
- Authors: Xiao-Yang Liu, Ziyi Xia, Hongyang Yang, Jiechao Gao, Daochen Zha, Ming
Zhu, Christina Dan Wang, Zhaoran Wang, Jian Guo
- Abstract要約: FinRL-Metaは、現実世界の市場からジムスタイルの市場環境へ動的データセットを処理するライブラリである。
我々は,ユーザが新しい取引戦略を設計するための足場として,人気のある研究論文を例示し,再現する。
また、ユーザが自身の結果を視覚化し、相対的なパフォーマンスを評価するために、このライブラリをクラウドプラットフォームにデプロイします。
- 参考スコア(独自算出の注目度): 68.11692837240756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The financial market is a particularly challenging playground for deep
reinforcement learning due to its unique feature of dynamic datasets. Building
high-quality market environments for training financial reinforcement learning
(FinRL) agents is difficult due to major factors such as the low
signal-to-noise ratio of financial data, survivorship bias of historical data,
and model overfitting. In this paper, we present FinRL-Meta, a data-centric and
openly accessible library that processes dynamic datasets from real-world
markets into gym-style market environments and has been actively maintained by
the AI4Finance community. First, following a DataOps paradigm, we provide
hundreds of market environments through an automatic data curation pipeline.
Second, we provide homegrown examples and reproduce popular research papers as
stepping stones for users to design new trading strategies. We also deploy the
library on cloud platforms so that users can visualize their own results and
assess the relative performance via community-wise competitions. Third, we
provide dozens of Jupyter/Python demos organized into a curriculum and a
documentation website to serve the rapidly growing community. The open-source
codes for the data curation pipeline are available at
https://github.com/AI4Finance-Foundation/FinRL-Meta
- Abstract(参考訳): 金融市場は、動的データセットのユニークな特徴から、深層強化学習にとって特に困難な場である。
金融強化学習(FinRL)エージェントを訓練するための高品質な市場環境の構築は、財務データの信号対雑音比の低さ、過去のデータの生存バイアス、モデルオーバーフィッティングなどの大きな要因により困難である。
本稿では,実世界の市場からジム型の市場環境へ動的データセットを処理し,ai4financeコミュニティによって積極的に維持されているデータ中心かつオープンアクセス可能なライブラリであるfinrl-metaを提案する。
まず、dataopsパラダイムに従って、自動データキュレーションパイプラインを通じて、数百のマーケット環境を提供します。
第二に、我々は自家製の事例を提供し、人気のある研究論文を、ユーザーが新しい取引戦略を設計するための足場として再現する。
また、ライブラリをクラウドプラットフォームにデプロイすることで、ユーザは自身の結果を視覚化し、コミュニティによるコンペティションを通じて相対的なパフォーマンスを評価することができます。
第3に、急速に成長するコミュニティにサービスを提供するために、カリキュラムとドキュメントウェブサイトにまとめられた数十のJupyter/Pythonデモを提供しています。
データキュレーションパイプラインのオープンソースコードはhttps://github.com/AI4Finance-Foundation/FinRL-Metaで公開されている。
関連論文リスト
- AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Data Acquisition: A New Frontier in Data-centric AI [65.90972015426274]
まず、現在のデータマーケットプレースを調査し、データセットに関する詳細な情報を提供するプラットフォームが不足していることを明らかにする。
次に、データプロバイダと取得者間のインタラクションをモデル化するベンチマークであるDAMチャレンジを紹介します。
提案手法の評価は,機械学習における効果的なデータ取得戦略の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-22T22:15:17Z) - FinGPT: Democratizing Internet-scale Data for Financial Large Language
Models [35.83244096535722]
大型言語モデル (LLM) は、人間に似たテキストの理解と生成に顕著な熟練性を示した。
ファイナンシャル・ジェネレーティブ・プレトレーニング・トランスフォーマー(FinGPT)は、インターネット上の34の多様なソースからリアルタイムの財務データの収集とキュレーションを自動化する。
FinGPTは、FinLLMを民主化し、イノベーションを刺激し、オープンファイナンスにおける新たな機会を開放することを目指している。
論文 参考訳(メタデータ) (2023-07-19T22:43:57Z) - FinGPT: Open-Source Financial Large Language Models [20.49272722890324]
我々は金融セクター向けのオープンソースの大規模言語モデルFinGPTを提案する。
プロプライエタリなモデルとは異なり、FinGPTはデータ中心のアプローチを採用し、研究者や実践者にアクセスしやすく透明なリソースを提供する。
ロボアドバイス,アルゴリズムトレーディング,ローコード開発など,ユーザにとってのステップストーンとして,潜在的な応用例をいくつか紹介する。
論文 参考訳(メタデータ) (2023-06-09T16:52:00Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerfは、MLデータセットとデータ中心アルゴリズムを評価するための、コミュニティ主導のベンチマークスイートである。
私たちは、この反復的な開発をサポートするために、複数の課題を抱えたオープンなオンラインプラットフォームを提供しています。
ベンチマーク、オンライン評価プラットフォーム、ベースライン実装はオープンソースである。
論文 参考訳(メタデータ) (2022-07-20T17:47:54Z) - PyRelationAL: A Library for Active Learning Research and Development [0.11545092788508224]
PyRelationALは、アクティブラーニング(AL)研究のためのオープンソースライブラリである。
既存の文献に基づいたベンチマークデータセットとALタスク設定へのアクセスを提供する。
我々は、ベンチマークデータセットのPyRelationALコレクションの実験を行い、ALが提供できる相当な経済状況を示す。
論文 参考訳(メタデータ) (2022-05-23T08:21:21Z) - FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven
Deep Reinforcement Learning in Quantitative Finance [58.77314662664463]
FinRL-Metaは、データ駆動型金融強化学習のための市場環境の宇宙を構築している。
まず、FinRL-MetaはDRLベースの戦略の設計パイプラインから財務データ処理を分離する。
第2に、FinRL-Metaは様々な取引タスクに数百の市場環境を提供している。
論文 参考訳(メタデータ) (2021-12-13T16:03:37Z) - FinRL: Deep Reinforcement Learning Framework to Automate Trading in
Quantitative Finance [22.808509136431645]
深層強化学習(DRL)は、量的ファイナンスにおいて競争力を持つと想定されている。
本稿では,オープンソースのフレームワーク textitFinRL を,量的トレーダーが学習曲線の急勾配を克服するのに役立つための完全なパイプラインとして提示する。
論文 参考訳(メタデータ) (2021-11-07T00:34:32Z) - OSOUM Framework for Trading Data Research [79.0383470835073]
私たちは、私たちの知る限り、最初のオープンソースのシミュレーションプラットフォームであるOpen SOUrce Market Simulator(OSOUM)を提供して、トレーディング市場、特にデータ市場を分析します。
我々は、購入に利用可能なさまざまなデータセットを所有する売り手と、購入に有効な適切なデータセットを検索する買い手という2つのタイプのエージェントからなる、特定のデータ市場モデルを記述し、実装する。
データ市場を扱うための商用フレームワークはすでに存在していますが、購入者および販売者の両方が(データ)市場に参加することの可能な振る舞いをシミュレートするための、自由で広範なエンドツーエンドの研究ツールを提供しています。
論文 参考訳(メタデータ) (2021-02-18T09:20:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。