論文の概要: Mutual information of spin systems from autoregressive neural networks
- arxiv url: http://arxiv.org/abs/2304.13412v2
- Date: Thu, 26 Oct 2023 12:47:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-28 05:09:13.050540
- Title: Mutual information of spin systems from autoregressive neural networks
- Title(参考訳): 自己回帰ニューラルネットワークからのスピン系の相互情報
- Authors: Piotr Bia{\l}as, Piotr Korcyl, Tomasz Stebel
- Abstract要約: モンテカルロサンプリングに基づく古典的スピン系の二部共役情報を推定する新しい直接手法について述べる。
乗算接続された偶対除算を含む4つのパーティショニングのイジングモデルでこれを実証する。
- 参考スコア(独自算出の注目度): 0.018416014644193065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a new direct method to estimate bipartite mutual information of a
classical spin system based on Monte Carlo sampling enhanced by autoregressive
neural networks. It allows studying arbitrary geometries of subsystems and can
be generalized to classical field theories. We demonstrate it on the Ising
model for four partitionings, including a multiply-connected even-odd division.
We show that the area law is satisfied for temperatures away from the critical
temperature: the constant term is universal, whereas the proportionality
coefficient is different for the even-odd partitioning.
- Abstract(参考訳): 自己回帰ニューラルネットワークにより強化されたモンテカルロサンプリングに基づく古典スピン系の2成分相互情報を推定する新しい直接法について述べる。
これはサブシステムの任意の幾何学を研究でき、古典場理論に一般化することができる。
多重接続された偶対除算を含む4つのパーティショニングのIsingモデルでこれを実証する。
面積法則は臨界温度から離れた温度で満たされ、定数項は普遍的であるのに対し、比例係数は偶数分割に対して異なることを示す。
関連論文リスト
- On a Matrix Ensemble for Arbitrary Complex Quantum Systems [0.0]
固有状態熱化仮説(ETH)の基礎としてDeutschが提唱した固有ベクトルアンサンブルのバリエーションについて検討する。
相関関数のリアルタイム動作を変更するシステム固有情報の残余に焦点をあてる。
本研究では, 小型エネルギー窓の相関関数に対して, 新たなアンサンブルによって定義される関数がETHの予測に還元されることを示す。
論文 参考訳(メタデータ) (2024-07-29T23:17:45Z) - Rényi entanglement entropy of spin chain with Generative Neural Networks [0.0]
スピン系のR'enyiエンタングルメントエントロピーを推定する手法について述べる。
これは、レプリカのトリックと、明確な確率推定を伴う生成ニューラルネットワークに基づいている。
一次元量子イジングスピン鎖上での本手法の実証を行う。
論文 参考訳(メタデータ) (2024-06-10T11:44:54Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Post-Regularization Confidence Bands for Ordinary Differential Equations [6.3582148777824115]
我々は、未知の機能とノイズの多いデータ観測を備えたODEにおける個々の規制機能に対する信頼バンドを構築した。
構築された信頼バンドはカーネルのカバレッジ確率が所望であることを示し、回復した規制ネットワークは1つに傾向のある真理に近づいた。
論文 参考訳(メタデータ) (2021-10-24T19:21:10Z) - Two-layer neural networks with values in a Banach space [1.90365714903665]
本研究では,領域と範囲がバラッハ空間である2層ニューラルネットワークについて検討する。
非線形性として、正の部分を取る格子演算を選択し、$mathbb Rd$-valued ニューラルネットワークの場合、これはReLU活性化関数に対応する。
論文 参考訳(メタデータ) (2021-05-05T14:54:24Z) - Double-descent curves in neural networks: a new perspective using
Gaussian processes [9.153116600213641]
ニューラルネットワークの二重輝線曲線は、一般化誤差が最初にパラメータの増加とともに下降し、最適数のパラメータに達した後に成長する現象を記述している。
本稿では,ニューラルネットワークガウス過程カーネルのスペクトルの幅依存性として,経験的特徴共分散行列のスペクトル分布を特徴付けるために,ランダム行列理論の手法を用いる。
論文 参考訳(メタデータ) (2021-02-14T20:31:49Z) - Deep Archimedean Copulas [98.96141706464425]
ACNetは、構造的特性を強制する、新しい差別化可能なニューラルネットワークアーキテクチャである。
我々は、ACNetが共通のアルキメデスコピュラスを近似し、データに適合する可能性のある新しいコプラを生成することができることを示した。
論文 参考訳(メタデータ) (2020-12-05T22:58:37Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
任意の特定のリー群からの変換に同値な畳み込み層を構築するための一般的な方法を提案する。
同じモデルアーキテクチャを画像、ボール・アンド・スティック分子データ、ハミルトン力学系に適用する。
論文 参考訳(メタデータ) (2020-02-25T17:40:38Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。