論文の概要: Effect of latent space distribution on the segmentation of images with
multiple annotations
- arxiv url: http://arxiv.org/abs/2304.13476v1
- Date: Wed, 26 Apr 2023 12:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 14:31:03.594455
- Title: Effect of latent space distribution on the segmentation of images with
multiple annotations
- Title(参考訳): 複数アノテーションを用いた画像分割における潜時空間分布の影響
- Authors: Ishaan Bhat and Josien P.W. Pluim and Max A. Viergever and Hugo J.
Kuijf
- Abstract要約: 本稿では、ガウス分布のより一般的な形式を潜在空間分布として許容することにより、確率的U-ネットを拡張した一般化確率的U-Netを提案する。
脳内の肺腫瘍および白質過大度の基準セグメンテーションの変動を捉えるために,潜時空間分布の選択が与える影響について検討した。
- 参考スコア(独自算出の注目度): 5.054729045700466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the Generalized Probabilistic U-Net, which extends the
Probabilistic U-Net by allowing more general forms of the Gaussian distribution
as the latent space distribution that can better approximate the uncertainty in
the reference segmentations. We study the effect the choice of latent space
distribution has on capturing the variation in the reference segmentations for
lung tumors and white matter hyperintensities in the brain. We show that the
choice of distribution affects the sample diversity of the predictions and
their overlap with respect to the reference segmentations. We have made our
implementation available at
https://github.com/ishaanb92/GeneralizedProbabilisticUNet
- Abstract(参考訳): 本稿では、ガウス分布のより一般的な形式を、参照セグメンテーションの不確実性をよりよく近似できる潜在空間分布として許容することにより、確率的U-ネットを拡張する一般化確率的U-Netを提案する。
脳内の肺腫瘍および白質過大度の基準セグメンテーションの変動を捉えるために,潜時空間分布の選択が与える影響について検討した。
本研究では,分布の選択が,参照セグメンテーションに対する予測と重なり合いのサンプル多様性に影響を与えることを示す。
私たちは実装をhttps://github.com/ishaanb92/GeneralizedProbabilisticUNetで公開しました。
関連論文リスト
- Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Investigating and Improving Latent Density Segmentation Models for Aleatoric Uncertainty Quantification in Medical Imaging [21.311726807879456]
イメージセグメンテーションでは、この問題に対処するために潜在密度モデルを利用することができる。
最も一般的なアプローチは確率的U-Net (PU-Net) である。
我々は,すべての潜伏次元における等質性を促進するために,相互情報更新とエントロピー規則化されたシンクホーン更新を導入する。
論文 参考訳(メタデータ) (2023-07-31T14:09:03Z) - StyleGenes: Discrete and Efficient Latent Distributions for GANs [149.0290830305808]
GAN(Generative Adversarial Networks)のための離散潜在分布を提案する。
連続的な先行点から潜在ベクトルを描く代わりに、学習可能な潜在点の有限集合からサンプリングする。
私たちは生物の情報のエンコーディングからインスピレーションを得ます。
論文 参考訳(メタデータ) (2023-04-30T23:28:46Z) - Generalized Probabilistic U-Net for medical image segementation [3.398241562010881]
ガウス分布のより一般的な形式を許容することにより、確率的U-ネットを拡張した一般化確率的U-Netを提案する。
LIDC-IDRIデータセットを用いて,遅延空間分布の選択が参照セグメンテーションの不確かさを捕捉する効果について検討した。
論文 参考訳(メタデータ) (2022-07-26T13:03:37Z) - Structured Uncertainty in the Observation Space of Variational
Autoencoders [20.709989481734794]
画像合成において、そのような分布からのサンプリングは、非相関な画素ノイズを伴う空間的非コヒーレントな結果を生成する。
低ランクパラメータ化により空間依存性を符号化する観測空間の代替モデルを提案する。
画素単位の独立分布とは対照的に,本サンプルは複数の可算出力の予測を可能にする平均値から意味論的に有意な変動を含むと考えられる。
論文 参考訳(メタデータ) (2022-05-25T07:12:50Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Cycle Consistent Probability Divergences Across Different Spaces [38.43511529063335]
確率分布の相違は、統計的推測と機械学習の核心にある。
本研究は, 異方性, 異方性, 異方性, 異なる空間上の分布をマッチングするための, アンバランスなモンジュ最適輸送定式化を提案する。
論文 参考訳(メタデータ) (2021-11-22T16:35:58Z) - Personalized Trajectory Prediction via Distribution Discrimination [78.69458579657189]
トラリミー予測は将来の力学のマルチモーダルな性質を捉えるジレンマと対立する。
本研究では,パーソナライズされた動作パターンを予測するDisDisDis(Disdis)手法を提案する。
本手法は,プラグイン・アンド・プレイモジュールとして既存のマルチモーダル予測モデルと統合することができる。
論文 参考訳(メタデータ) (2021-07-29T17:42:12Z) - Bayesian Deep Learning and a Probabilistic Perspective of Generalization [56.69671152009899]
ディープアンサンブルはベイズ辺化を近似する有効なメカニズムであることを示す。
また,アトラクションの流域内での辺縁化により,予測分布をさらに改善する関連手法を提案する。
論文 参考訳(メタデータ) (2020-02-20T15:13:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。