論文の概要: Learning battery model parameter dynamics from data with recursive
Gaussian process regression
- arxiv url: http://arxiv.org/abs/2304.13666v1
- Date: Wed, 26 Apr 2023 16:40:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 13:31:57.015375
- Title: Learning battery model parameter dynamics from data with recursive
Gaussian process regression
- Title(参考訳): 回帰ガウス過程回帰データからのバッテリモデルパラメータダイナミクスの学習
- Authors: Antti Aitio, Dominik J\"ost, Dirk Uwe Sauer, David A. Howey
- Abstract要約: 本稿では,データ駆動とモデル駆動を併用したハイブリッド手法を提案する。
具体的には、状態、動作条件、寿命の関数としてモデルパラメータを推定するベイズ的データ駆動手法であるガウス的プロセス回帰を実証する。
その結果, 実測データと実測データの両方において, 電池容量と内部抵抗の正確な推定値, 予測値などの有効性が示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating state of health is a critical function of a battery management
system but remains challenging due to the variability of operating conditions
and usage requirements of real applications. As a result, techniques based on
fitting equivalent circuit models may exhibit inaccuracy at extremes of
performance and over long-term ageing, or instability of parameter estimates.
Pure data-driven techniques, on the other hand, suffer from lack of generality
beyond their training dataset. In this paper, we propose a hybrid approach
combining data- and model-driven techniques for battery health estimation.
Specifically, we demonstrate a Bayesian data-driven method, Gaussian process
regression, to estimate model parameters as functions of states, operating
conditions, and lifetime. Computational efficiency is ensured through a
recursive approach yielding a unified joint state-parameter estimator that
learns parameter dynamics from data and is robust to gaps and varying operating
conditions. Results show the efficacy of the method, on both simulated and
measured data, including accurate estimates and forecasts of battery capacity
and internal resistance. This opens up new opportunities to understand battery
ageing in real applications.
- Abstract(参考訳): 健康状態の推定はバッテリ管理システムの重要な機能であるが、運用条件の変動と実際のアプリケーションの使用要件のため、依然として困難である。
その結果、等価回路モデルに適合する手法は、性能の極端に不正確であり、長期化やパラメータ推定の不安定性を示す可能性がある。
一方、純粋なデータ駆動技術は、トレーニングデータセット以外の一般性の欠如に悩まされている。
本稿では,バッテリヘルス推定のためのデータ駆動手法とモデル駆動手法を組み合わせたハイブリッド手法を提案する。
具体的には、状態、動作条件、寿命の関数としてモデルパラメータを推定するベイズ的データ駆動手法であるガウス的プロセス回帰を実証する。
計算効率は、データからパラメータのダイナミクスを学習し、ギャップや様々な動作条件に頑健な統合状態パラメータ推定器を出力する再帰的アプローチによって確保される。
その結果、シミュレーションデータと測定データの両方において、電池容量と内部抵抗の正確な推定と予測を含む方法の有効性が示された。
これにより、実際のアプリケーションでバッテリーの老化を理解する新しい機会が生まれる。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Probabilistic Surrogate Model for Accelerating the Design of Electric Vehicle Battery Enclosures for Crash Performance [0.0]
本稿では,事故性能に着目した電気自動車用バッテリケースの高速化設計のための確率的サロゲートモデルを提案する。
このモデルは、様々な材料およびプロセスパラメータのサーモフォーミングとクラッシュシミュレーションから生成されたデータを用いて訓練された。
新しいシミュレーションデータに対する検証では、全ての出力変数に対して平均絶対パーセンテージ誤差8.08%でモデルの予測精度を実証した。
論文 参考訳(メタデータ) (2024-08-06T21:03:16Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for
Long-term Battery Degradation Forecasting [0.9208007322096533]
電気自動車のバッテリーの寿命や寿命の予測は、決定的かつ困難な問題だ。
多数のアルゴリズムが、バッテリ管理システムが収集したデータから利用できる機能を組み込んでいる。
この制限を克服できる高精度な手法を開発した。
論文 参考訳(メタデータ) (2022-12-03T12:59:51Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
本稿では,少数の電圧/電流サンプルから同時に老化状態を推定できるトランスフォーマーに基づく新しいディープラーニングアーキテクチャを提案する。
実験の結果, 学習モデルは様々な複雑さの入力電流分布に有効であり, 広範囲の劣化レベルに対して堅牢であることがわかった。
論文 参考訳(メタデータ) (2022-06-01T15:31:06Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
バナジウムフローバッテリ(VRFB)のゼロ次元(0D)モデルにおけるパラメータ推定のための物理拘束型ディープニューラルネットワーク(PCDNN)を提案する。
そこで, PCDNN法は, 動作条件のモデルパラメータを推定し, 電圧の0Dモデル予測を改善することができることを示す。
また,PCDNNアプローチでは,トレーニングに使用しない操作条件のパラメータ値を推定する一般化能力が向上することが実証された。
論文 参考訳(メタデータ) (2021-06-21T23:42:58Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Battery Model Calibration with Deep Reinforcement Learning [5.004835203025507]
バッテリーモデルのキャリブレーションパラメータを確実かつ効率的に推測するための強化学習ベースのフレームワークを実装します。
このフレームワークは、観測から現実ギャップを補うために、計算モデルパラメータのリアルタイム推論を可能にする。
論文 参考訳(メタデータ) (2020-12-07T19:26:08Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Learning Stable Nonparametric Dynamical Systems with Gaussian Process
Regression [9.126353101382607]
データからガウス過程回帰に基づいて非パラメトリックリアプノフ関数を学習する。
非パラメトリック制御Lyapunov関数に基づく名目モデルの安定化は、トレーニングサンプルにおける名目モデルの挙動を変化させるものではないことを証明した。
論文 参考訳(メタデータ) (2020-06-14T11:17:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。