論文の概要: Multi-Party Chat: Conversational Agents in Group Settings with Humans
and Models
- arxiv url: http://arxiv.org/abs/2304.13835v1
- Date: Wed, 26 Apr 2023 21:41:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 15:01:47.468356
- Title: Multi-Party Chat: Conversational Agents in Group Settings with Humans
and Models
- Title(参考訳): マルチパーティチャット:人間とモデルによるグループ設定における会話エージェント
- Authors: Jimmy Wei, Kurt Shuster, Arthur Szlam, Jason Weston, Jack Urbanek,
Mojtaba Komeili
- Abstract要約: 我々は,多人数会話において,言語モデルが1つ以上のキャラクタとして機能する能力を評価する。
新しいデータセットであるMultiLIGHTは、グループ設定の大幅な改善に役立ちます。
- 参考スコア(独自算出の注目度): 39.80729604768669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current dialogue research primarily studies pairwise (two-party)
conversations, and does not address the everyday setting where more than two
speakers converse together. In this work, we both collect and evaluate
multi-party conversations to study this more general case. We use the LIGHT
environment to construct grounded conversations, where each participant has an
assigned character to role-play. We thus evaluate the ability of language
models to act as one or more characters in such conversations. Models require
two skills that pairwise-trained models appear to lack: (1) being able to
decide when to talk; (2) producing coherent utterances grounded on multiple
characters. We compare models trained on our new dataset to existing
pairwise-trained dialogue models, as well as large language models with
few-shot prompting. We find that our new dataset, MultiLIGHT, which we will
publicly release, can help bring significant improvements in the group setting.
- Abstract(参考訳): 現在の対話研究は、主にペア(双方向)の会話を研究しており、2人以上の話者が会話する日常的な状況に対処していない。
本研究では,マルチパーティ会話の収集と評価を行い,より一般的な事例について検討する。
我々はLIGHT環境を利用して、各参加者がロールプレイに割り当てられたキャラクタを持つ接地会話を構築する。
そこで我々は,このような会話において,言語モデルが1つ以上の文字として振る舞う能力を評価する。
モデルは、(1)いつ話すかを決定することができること、(2)複数の文字に基づいてコヒーレントな発話を生成すること、の2つのスキルを必要とする。
我々は、新しいデータセットでトレーニングされたモデルと既存のペアワイズ学習された対話モデルを比較し、ほとんどショットプロンプトのない大きな言語モデルと比較する。
新しいデータセットであるmultilightは、公開する予定ですが、グループ設定に大幅な改善をもたらすことができます。
関連論文リスト
- Conversation Disentanglement with Bi-Level Contrastive Learning [26.707584899718288]
既存の手法には2つの主な欠点がある。まず、ペアの発話関係を過度に強調するが、発話-文脈関係モデルに不適切な注意を払う。
本稿では,2段階のコントラスト学習に基づく一般的な不協和モデルを提案する。このモデルでは,同一セッションに近づき,各発話が表現空間内のクラスタ化されたセッションプロトタイプに近づくように促す。
論文 参考訳(メタデータ) (2022-10-27T08:41:46Z) - DialogZoo: Large-Scale Dialog-Oriented Task Learning [52.18193690394549]
我々は,多種多様な対話課題を解くための統合基盤モデルの構築を目指している。
この目的を達成するために、73の公開データセットから、まず大規模なラベル付き対話データセットを収集する。
論文 参考訳(メタデータ) (2022-05-25T11:17:16Z) - Fusing task-oriented and open-domain dialogues in conversational agents [12.338220374261343]
2つの対話モードは、友好的な人間のアシスタントが簡単に行うように、同じ会話でシームレスに連携することができる。
本稿では,マルチターン対話におけるTODとODDの融合の問題に対処する。
すなわち、対話は2つのモードから切り替わる。
論文 参考訳(メタデータ) (2021-09-09T09:48:26Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
マルチターン対話は、2つ以上の異なる話者の役割から複数の発話からなる。
既存の検索に基づくマルチターン対話モデルでは、事前訓練された言語モデル(PrLM)をエンコーダとして、対話を粗く表現する。
本稿では,対話履歴に係わる効果的な発話認識表現と話者認識表現をモデル化することにより,そのようなギャップを埋める新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-09-14T15:07:19Z) - The Adapter-Bot: All-In-One Controllable Conversational Model [66.48164003532484]
本稿では、DialGPTなどの固定バックボーンモデルを用いて、異なるアダプタを介してオンデマンド対話スキルをトリガーする対話モデルを提案する。
スキルに応じて、モデルはテキスト、テーブル、強調応答などの複数の知識タイプを処理できる。
我々は,既存の会話モデルと比較し,自動評価を用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2020-08-28T10:59:31Z) - XPersona: Evaluating Multilingual Personalized Chatbot [76.00426517401894]
我々はペルソナ・チャットの多言語拡張(XPersona)を提案する。
我々のデータセットには、多言語パーソナライズされたエージェントの構築と評価のための英語以外の6言語でのペルソナ会話が含まれています。
論文 参考訳(メタデータ) (2020-03-17T07:52:08Z) - I love your chain mail! Making knights smile in a fantasy game world:
Open-domain goal-oriented dialogue agents [69.68400056148336]
我々は、模倣学習したチトチャットモデルに対して強化学習を施した目標指向モデルを訓練する。
両モデルが逆モデルベースラインより優れており,目標を達成するために対話相手と自然に会話できることを示す。
論文 参考訳(メタデータ) (2020-02-07T16:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。