LSTM based IoT Device Identification
- URL: http://arxiv.org/abs/2304.13905v1
- Date: Thu, 27 Apr 2023 01:13:12 GMT
- Title: LSTM based IoT Device Identification
- Authors: Kahraman Kostas
- Abstract summary: We present a method that identifies devices in the Aalto dataset using Long short-term memory (LSTM)
In this study, we present a method that identifies devices in the Aalto dataset using Long short-term memory (LSTM)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the use of the Internet of Things is becoming more and more popular,
many security vulnerabilities are emerging with the large number of devices
being introduced to the market. In this environment, IoT device identification
methods provide a preventive security measure as an important factor in
identifying these devices and detecting the vulnerabilities they suffer from.
In this study, we present a method that identifies devices in the Aalto dataset
using Long short-term memory (LSTM)
Related papers
- Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways [45.44831696628473]
This paper presents IoTScent, an open-source forensic tool that enables IoT gateways and Home Automation platforms to perform IoT traffic capture and analysis.
IoTScent is specifically designed to operate over IEEE5.4-based traffic, which is the basis for many IoT-specific protocols such as Zigbee, 6LoWPAN and Thread.
This work provides a comprehensive description of the IoTScent tool, including a practical use case that demonstrates the use of the tool to perform device identification from Zigbee traffic.
arXiv Detail & Related papers (2023-10-05T09:10:05Z) - CNN based IoT Device Identification [0.0]
We present a method that identifies devices in the Aalto dataset using the convolutional neural network (CNN)
In this study, we present a method that identifies devices in the Aalto dataset using the convolutional neural network (CNN)
arXiv Detail & Related papers (2023-04-27T00:37:16Z) - IoT Device Identification Based on Network Communication Analysis Using
Deep Learning [43.0717346071013]
The risk of attacks on an organization's network has increased due to the growing use of less secure IoT devices.
To tackle this threat and protect their networks, organizations generally implement security policies in which only white listed IoT devices are allowed on the network.
In this research, deep learning is applied to network communication for the automated identification of IoT devices permitted on the network.
arXiv Detail & Related papers (2023-03-02T13:44:58Z) - Is this IoT Device Likely to be Secure? Risk Score Prediction for IoT
Devices Using Gradient Boosting Machines [11.177584118932572]
Security risk assessment and prediction are critical for organisations deploying Internet of Things (IoT) devices.
This paper proposes a novel risk prediction for IoT devices based on publicly available information about them.
arXiv Detail & Related papers (2021-11-23T13:41:29Z) - Rapid IoT Device Identification at the Edge [5.213147236587845]
We show a novel method of rapid IoT device identification using neural networks trained on device DNS traffic.
The method identifies devices by fitting a model to the first seconds of DNS second-level-domain traffic following their first connection.
We classify 30 consumer IoT devices from 27 different manufacturers with 82% and 93% accuracy for product type and device manufacturers respectively.
arXiv Detail & Related papers (2021-10-26T18:11:38Z) - Machine Learning for the Detection and Identification of Internet of
Things (IoT) Devices: A Survey [16.3730669259576]
The Internet of Things (IoT) is becoming an indispensable part of everyday life, enabling a variety of emerging services and applications.
The first step in securing the IoT is detecting rogue IoT devices and identifying legitimate ones.
We classify the IoT device identification and detection into four categories: device-specific pattern recognition, Deep Learning enabled device identification, unsupervised device identification, and abnormal device detection.
arXiv Detail & Related papers (2021-01-25T15:51:04Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
The security aspect of IoT devices is an infant field, which is why it is our focus in this paper.
We developed a system that can recognize malicious behavior of a specific IoT node on the network.
Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network.
arXiv Detail & Related papers (2020-10-13T10:56:33Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
arXiv Detail & Related papers (2020-02-25T12:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.