Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2405.07256v1
- Date: Sun, 12 May 2024 11:30:01 GMT
- Title: Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation
- Authors: Suruchi Kumari, Pravendra Singh,
- Abstract summary: Semi-supervised medical image segmentation has gained growing interest due to its ability to utilize unannotated data.
The current state-of-the-art methods mostly rely on pseudo-labeling within a co-training framework.
We propose a novel approach where multiple pseudo-labels for the same unannotated image are used to learn from the unlabeled data.
- Score: 7.9449756510822915
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Semi-supervised medical image segmentation has gained growing interest due to its ability to utilize unannotated data. The current state-of-the-art methods mostly rely on pseudo-labeling within a co-training framework. These methods depend on a single pseudo-label for training, but these labels are not as accurate as the ground truth of labeled data. Relying solely on one pseudo-label often results in suboptimal results. To this end, we propose a novel approach where multiple pseudo-labels for the same unannotated image are used to learn from the unlabeled data: the conventional fixed pseudo-label and the newly introduced dynamic pseudo-label. By incorporating multiple pseudo-labels for the same unannotated image into the co-training framework, our approach provides a more robust training approach that improves model performance and generalization capabilities. We validate our novel approach on three semi-supervised medical benchmark segmentation datasets, the Left Atrium dataset, the Pancreas-CT dataset, and the Brats-2019 dataset. Our approach significantly outperforms state-of-the-art methods over multiple medical benchmark segmentation datasets with different labeled data ratios. We also present several ablation experiments to demonstrate the effectiveness of various components used in our approach.
Related papers
- Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
We propose the PLGDF framework, which builds upon the mean teacher network for segmenting medical images with less annotation.
We propose a novel pseudo-label utilization scheme, which combines labeled and unlabeled data to augment the dataset effectively.
Our framework yields superior performance compared to six state-of-the-art semi-supervised learning methods.
arXiv Detail & Related papers (2023-11-17T06:36:43Z) - Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
We present a novel semi-supervised learning method, Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation.
We use distinct decoders for student and teacher networks while maintain the same encoder.
To learn from unlabeled data, we create pseudo-labels generated by the teacher networks and augment the training data with the pseudo-labels.
arXiv Detail & Related papers (2023-08-31T09:13:34Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
We propose a general framework for multi-label image classification that can effectively mine complex inter-label relationships.
Our proposed methods can achieve state-of-the-art performance on three datasets.
arXiv Detail & Related papers (2022-03-08T12:39:05Z) - GuidedMix-Net: Semi-supervised Semantic Segmentation by Using Labeled
Images as Reference [90.5402652758316]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
It uses labeled information to guide the learning of unlabeled instances.
It achieves competitive segmentation accuracy and significantly improves the mIoU by +7$%$ compared to previous approaches.
arXiv Detail & Related papers (2021-12-28T06:48:03Z) - Reference-guided Pseudo-Label Generation for Medical Semantic
Segmentation [25.76014072179711]
We propose a novel approach to generate supervision for semi-supervised semantic segmentation.
We use a small number of labeled images as reference material and match pixels in an unlabeled image to the semantics of the best fitting pixel in a reference set.
We achieve the same performance as a standard fully supervised model on X-ray anatomy segmentation, albeit 95% fewer labeled images.
arXiv Detail & Related papers (2021-12-01T12:21:24Z) - Weakly Supervised Medical Image Segmentation [2.355970984550866]
We propose a novel approach for few-shot semantic segmentation with sparse labeled images.
We use sparse labels in the meta-training and dense labels in the meta-test, thus making the model learn to predict dense labels from sparse ones.
arXiv Detail & Related papers (2021-08-12T00:15:47Z) - GuidedMix-Net: Learning to Improve Pseudo Masks Using Labeled Images as
Reference [153.354332374204]
We propose a novel method for semi-supervised semantic segmentation named GuidedMix-Net.
We first introduce a feature alignment objective between labeled and unlabeled data to capture potentially similar image pairs.
MITrans is shown to be a powerful knowledge module for further progressive refining features of unlabeled data.
Along with supervised learning for labeled data, the prediction of unlabeled data is jointly learned with the generated pseudo masks.
arXiv Detail & Related papers (2021-06-29T02:48:45Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Learning Image Labels On-the-fly for Training Robust Classification
Models [13.669654965671604]
We show how noisy annotations (e.g., from different algorithm-based labelers) can be utilized together and mutually benefit the learning of classification tasks.
A meta-training based label-sampling module is designed to attend the labels that benefit the model learning the most through additional back-propagation processes.
arXiv Detail & Related papers (2020-09-22T05:38:44Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.