論文の概要: Interpretable Neural-Symbolic Concept Reasoning
- arxiv url: http://arxiv.org/abs/2304.14068v1
- Date: Thu, 27 Apr 2023 09:58:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 13:59:01.586485
- Title: Interpretable Neural-Symbolic Concept Reasoning
- Title(参考訳): 解釈可能なニューラルシンボリック概念推論
- Authors: Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini, Mateo
Espinosa Zarlenga, Lucie Charlotte Magister, Alberto Tonda, Pietro Lio',
Frederic Precioso, Mateja Jamnik, Giuseppe Marra
- Abstract要約: 概念に基づくモデルは、人間の理解可能な概念のセットに基づいてタスクを学習することでこの問題に対処することを目的としている。
本稿では,概念埋め込みに基づく最初の解釈可能な概念ベースモデルであるDeep Concept Reasoner (DCR)を提案する。
- 参考スコア(独自算出の注目度): 7.1904050674791185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning methods are highly accurate, yet their opaque decision process
prevents them from earning full human trust. Concept-based models aim to
address this issue by learning tasks based on a set of human-understandable
concepts. However, state-of-the-art concept-based models rely on
high-dimensional concept embedding representations which lack a clear semantic
meaning, thus questioning the interpretability of their decision process. To
overcome this limitation, we propose the Deep Concept Reasoner (DCR), the first
interpretable concept-based model that builds upon concept embeddings. In DCR,
neural networks do not make task predictions directly, but they build syntactic
rule structures using concept embeddings. DCR then executes these rules on
meaningful concept truth degrees to provide a final interpretable and
semantically-consistent prediction in a differentiable manner. Our experiments
show that DCR: (i) improves up to +25% w.r.t. state-of-the-art interpretable
concept-based models on challenging benchmarks (ii) discovers meaningful logic
rules matching known ground truths even in the absence of concept supervision
during training, and (iii), facilitates the generation of counterfactual
examples providing the learnt rules as guidance.
- Abstract(参考訳): ディープラーニングの手法は非常に正確だが、その不透明な決定プロセスは、完全な人間の信頼を得ることを妨げている。
概念ベースのモデルは、人間の理解可能な概念のセットに基づいてタスクを学習することでこの問題に対処しようとしている。
しかし、最先端の概念に基づくモデルは、明確な意味的意味を欠いた高次元概念埋め込み表現に依存するため、決定プロセスの解釈可能性に疑問を呈する。
この制限を克服するために,概念埋め込みに基づく最初の解釈可能な概念ベースモデルであるDeep Concept Reasoner (DCR)を提案する。
DCRでは、ニューラルネットワークはタスク予測を直接行うのではなく、概念埋め込みを使用して構文ルール構造を構築する。
DCRはこれらのルールを意味のある概念の真理度で実行し、最終的な解釈可能かつ意味的に一貫性のある予測を微分可能な方法で提供する。
我々の実験はDCRが示す。
i) 挑戦的ベンチマーク上での最先端の解釈可能な概念ベースモデルに最大25%の改善
(ii)訓練中の概念監督がなくても、既知の根拠の真理に合致する有意義な論理規則を発見し、
(iii) 学習ルールをガイダンスとして提供する反実例の生成を促進する。
関連論文リスト
- Self-supervised Interpretable Concept-based Models for Text Classification [9.340843984411137]
本稿では,自己教師型解釈可能な概念埋め込みモデル(ICEM)を提案する。
我々は,大規模言語モデルの一般化能力を活用し,概念ラベルを自己管理的に予測する。
ICEMは、完全に教師されたコンセプトベースモデルやエンドツーエンドのブラックボックスモデルと同じようなパフォーマンスを達成するために、自己管理的な方法でトレーニングすることができる。
論文 参考訳(メタデータ) (2024-06-20T14:04:53Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
概念ボトルネックモデル (Concept Bottleneck Models, CBM) は、人間の理解可能な概念に基づいて、解釈可能なモデル決定を可能にする画像分類である。
既存のアプローチは、強いパフォーマンスを達成するために、画像ごとに多数の人間の介入を必要とすることが多い。
本稿では,概念関係を利用した学習型概念認識介入モジュールについて紹介する。
論文 参考訳(メタデータ) (2024-05-02T17:59:01Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
現在,SOTA の概念学習アプローチは,概念の忠実さの欠如と,概念の相互運用の限界という2つの大きな問題に悩まされている。
ドメイン間の概念学習のための新しい自己説明型アーキテクチャを提案する。
提案手法は,現在広く使われている4つの実世界のデータセットに対するSOTA概念学習手法に対して有効であることを示す。
論文 参考訳(メタデータ) (2024-05-01T06:50:18Z) - A survey on Concept-based Approaches For Model Improvement [2.1516043775965565]
概念は人間の思考基盤として知られている。
ディープニューラルネットワーク(DNN)における様々な概念表現とその発見アルゴリズムの体系的レビューと分類について述べる。
また,これらの手法を総合的に調査した最初の論文として,概念に基づくモデル改善文献について詳述する。
論文 参考訳(メタデータ) (2024-03-21T17:09:20Z) - ConcEPT: Concept-Enhanced Pre-Training for Language Models [57.778895980999124]
ConcEPTは、概念知識を事前訓練された言語モデルに注入することを目的としている。
これは、事前訓練されたコンテキストで言及されたエンティティの概念を予測するために、外部エンティティの概念予測を利用する。
実験の結果,ConcEPTは概念強化事前学習により概念知識を向上することがわかった。
論文 参考訳(メタデータ) (2024-01-11T05:05:01Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Implicit Concept Removal of Diffusion Models [92.55152501707995]
テキスト・ツー・イメージ(T2I)拡散モデルはしばしば、透かしや安全でない画像のような望ましくない概念を不注意に生成する。
幾何学駆動制御に基づく新しい概念除去手法であるGeom-Erasingを提案する。
論文 参考訳(メタデータ) (2023-10-09T17:13:10Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
概念活性化ベクトル(Concept Activation Vector, CAV)は、与えられたモデルと概念の潜在表現の間の線形関係を学習することに依存する。
我々は、線形概念関数を超えて概念に基づく解釈を拡張する概念グラディエント(CG)を提案した。
我々は、CGがおもちゃの例と実世界のデータセットの両方でCAVより優れていることを実証した。
論文 参考訳(メタデータ) (2022-08-31T17:06:46Z) - GlanceNets: Interpretabile, Leak-proof Concept-based Models [23.7625973884849]
概念ベースモデル(CBM)は、高レベルの概念の語彙の獲得と推論によって、ハイパフォーマンスと解釈可能性を組み合わせる。
我々は、モデル表現と基礎となるデータ生成プロセスとの整合性の観点から、解釈可能性を明確に定義する。
GlanceNetsは不整合表現学習とオープンセット認識の技法を利用してアライメントを実現する新しいCBMである。
論文 参考訳(メタデータ) (2022-05-31T08:53:53Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。