論文の概要: Human Semantic Segmentation using Millimeter-Wave Radar Sparse Point
Clouds
- arxiv url: http://arxiv.org/abs/2304.14132v1
- Date: Thu, 27 Apr 2023 12:28:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 13:28:45.990491
- Title: Human Semantic Segmentation using Millimeter-Wave Radar Sparse Point
Clouds
- Title(参考訳): ミリ波レーダスパースポイント雲を用いた人間の意味セグメンテーション
- Authors: Pengfei Song, Luoyu MEI, Han Cheng
- Abstract要約: 本稿では,ミリ波レーダの粗い逐次点雲のセマンティックセグメンテーションのためのフレームワークを提案する。
mmWaveデータの空間的特徴と時間的トポロジ的特徴は依然として問題である。
グラフ構造とトポロジ的特徴をポイントクラウドに導入し,セマンティックセグメンテーションフレームワークを提案する。
我々のモデルは、$mathbf82.31%$でカスタムデータセットの平均精度を達成し、最先端のアルゴリズムより優れている。
- 参考スコア(独自算出の注目度): 3.3888257250564364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a framework for semantic segmentation on sparse
sequential point clouds of millimeter-wave radar. Compared with cameras and
lidars, millimeter-wave radars have the advantage of not revealing privacy,
having a strong anti-interference ability, and having long detection distance.
The sparsity and capturing temporal-topological features of mmWave data is
still a problem. However, the issue of capturing the temporal-topological
coupling features under the human semantic segmentation task prevents previous
advanced segmentation methods (e.g PointNet, PointCNN, Point Transformer) from
being well utilized in practical scenarios. To address the challenge caused by
the sparsity and temporal-topological feature of the data, we (i) introduce
graph structure and topological features to the point cloud, (ii) propose a
semantic segmentation framework including a global feature-extracting module
and a sequential feature-extracting module. In addition, we design an efficient
and more fitting loss function for a better training process and segmentation
results based on graph clustering. Experimentally, we deploy representative
semantic segmentation algorithms (Transformer, GCNN, etc.) on a custom dataset.
Experimental results indicate that our model achieves mean accuracy on the
custom dataset by $\mathbf{82.31}\%$ and outperforms the state-of-the-art
algorithms. Moreover, to validate the model's robustness, we deploy our model
on the well-known S3DIS dataset. On the S3DIS dataset, our model achieves mean
accuracy by $\mathbf{92.6}\%$, outperforming baseline algorithms.
- Abstract(参考訳): 本稿では,ミリ波レーダの粗い逐次点雲のセマンティックセグメンテーションのためのフレームワークを提案する。
カメラやライダーと比較すると、ミリ波レーダーはプライバシーを明らかにせず、強力な干渉防止能力を持ち、検出距離が長いという利点がある。
mmWaveデータの空間性と時間的トポロジ的特徴は依然として問題である。
しかし、人間の意味セグメンテーションタスクで時間的トポロジー結合の特徴を捉える問題により、従来の高度なセグメンテーション手法(pointnet、pointcnn、point transformerなど)が実用的なシナリオでうまく利用できない。
データのスパース性と時間的トポロジー的特徴に起因する課題に対処するために,我々は,その課題について述べる。
(i)点雲にグラフ構造と位相的特徴を導入する。
(ii)グローバル機能抽出モジュールとシーケンシャル機能抽出モジュールを含むセマンティックセグメンテーションフレームワークを提案する。
さらに,グラフクラスタリングに基づくより優れたトレーニングプロセスとセグメンテーション結果のための,効率的で適合性の高い損失関数を設計する。
実験では,汎用セマンティックセグメンテーションアルゴリズム(Transformer,GCNNなど)をカスタムデータセット上に展開する。
実験結果から,本モデルはカスタムデータセットの平均精度を$\mathbf{82.31}\%$で達成し,最先端アルゴリズムよりも優れていることがわかった。
さらに、モデルの堅牢性を検証するために、よく知られたS3DISデータセットにモデルをデプロイする。
S3DISデータセットでは、平均精度を$\mathbf{92.6}\%$で達成し、ベースラインアルゴリズムより優れている。
関連論文リスト
- A Cosmic-Scale Benchmark for Symmetry-Preserving Data Processing [1.96862953848735]
局所的なクラスタリング環境と長距離相関を同時にキャプチャするグラフニューラルネットワークの能力をベンチマークする。
現在のアーキテクチャでは、ドメイン固有のベースラインと同様に、長距離相関から情報を取得することができません。
論文 参考訳(メタデータ) (2024-10-27T16:58:48Z) - ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
ShapeNetとModelNetを用いた大規模3DGSデータセットを構築した。
データセットのShapeSplatは、87のユニークなカテゴリから65Kのオブジェクトで構成されています。
textbftextitGaussian-MAEを導入し、ガウスパラメータからの表現学習の独特な利点を強調した。
論文 参考訳(メタデータ) (2024-08-20T14:49:14Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Neural-prior stochastic block model [0.0]
我々は,コミュニティを,逆ではなくノード属性によって決定されるものとしてモデル化することを提案する。
本稿では,信念伝播と近似メッセージパッシングを組み合わせた統計物理に基づくアルゴリズムを提案する。
提案したモデルとアルゴリズムは理論とアルゴリズムのベンチマークとして利用できる。
論文 参考訳(メタデータ) (2023-03-17T14:14:54Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - S3Net: 3D LiDAR Sparse Semantic Segmentation Network [1.330528227599978]
S3NetはLiDARポイントクラウドセマンティックセグメンテーションのための新しい畳み込みニューラルネットワークである。
sparse intra-channel attention module (sintraam)とsparse inter-channel attention module (sinteram)で構成されるエンコーダ-デコーダバックボーンを採用する。
論文 参考訳(メタデータ) (2021-03-15T22:15:24Z) - Learning Robust Feature Representations for Scene Text Detection [0.0]
本稿では、条件付きログを最大化するために、損失から導かれるネットワークアーキテクチャを提案する。
潜伏変数の層を複数の層に拡張することで、ネットワークは大規模に堅牢な機能を学ぶことができる。
実験では,提案アルゴリズムはリコール法と精度の両面で最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-05-26T01:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。