Finding, mapping and classifying optimal protocols for two-qubit
entangling gates
- URL: http://arxiv.org/abs/2304.14322v1
- Date: Thu, 27 Apr 2023 16:48:22 GMT
- Title: Finding, mapping and classifying optimal protocols for two-qubit
entangling gates
- Authors: Ignacio R. Sola, Seokmin Shin, Bo Y. Chang
- Abstract summary: We consider trapped neutral atoms excited to Rydberg states by different pulse sequences as an example of a flexible platform.
We characterize in detail the features of the solutions in parameter space, showing some correlations among the set of parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We characterize the set of optimal protocols for two-qubit entangling gates
through a mechanism analysis based on quantum pathways, which allows us to
compare and rank the different solutions. As an example of a flexible platform
with a rich landscape of protocols, we consider trapped neutral atoms excited
to Rydberg states by different pulse sequences that extend over several atomic
sites, optimizing both the temporal and the spatial features of the pulses.
Studying the rate of success of the algorithm under different constraints, we
analyze the impact of the proximity of the atoms on the nature and quality of
the optimal protocols. We characterize in detail the features of the solutions
in parameter space, showing some striking correlations among the set of
parameters. Together with the mechanism analysis, the spatio-temporal control
allows us to select protocols that operate under mechanisms by design, like
finding needles in the haystack.
Related papers
- Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Geometry of sequential quantum correlations and robust randomness
certification [0.0]
We study the geometry of quantum correlations and their implications for robust device-independent randomness generation.
We identify a boundary for the set of these correlations expressed as a trade-off between the amount of nonlocality between different observers.
We propose a practical protocol based on non-projective measurements that can produce the boundary correlations under ideal conditions.
arXiv Detail & Related papers (2023-09-21T17:50:29Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Spatiotemporal control of entangling gates on atomic N-qubit systems [0.0]
We use a novel optimization procedure to prepare gates in N-qubits systems.
The control allows treating a denser array of atoms, where each pulse acts on a subset of the qubits.
We characterize and classify all optimal protocols according to the mechanism of the gate.
arXiv Detail & Related papers (2023-05-10T18:37:55Z) - Optimal control for state preparation in two-qubit open quantum systems
driven by coherent and incoherent controls via GRAPE approach [77.34726150561087]
We consider a model of two qubits driven by coherent and incoherent time-dependent controls.
The dynamics of the system is governed by a Gorini-Kossakowski-Sudarshan-Lindblad master equation.
We study evolution of the von Neumann entropy, purity, and one-qubit reduced density matrices under optimized controls.
arXiv Detail & Related papers (2022-11-04T15:20:18Z) - Optimal two-qubit gates in recurrence protocols of entanglement purification [0.0]
The proposed method is based on a numerical search in the whole set of SU(4) matrices with the aid of a quasi-Newton algorithm.
We show for certain families of states that optimal protocols are not necessarily achieved by bilaterally applied controlled-NOT gates.
arXiv Detail & Related papers (2022-05-24T14:13:56Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Efficient and robust estimation of many-qubit Hamiltonians [0.0]
Characterizing the interactions and dynamics of quantum mechanical systems is an essential task in development of quantum technologies.
We propose an efficient protocol for characterizing the underlying Hamiltonian dynamics and the noise of a multi-qubit device.
This protocol can be used to parallelize to learn the Hamiltonian, rendering it applicable for the characterization of both current and future quantum devices.
arXiv Detail & Related papers (2022-05-19T13:52:32Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Topological and geometric patterns in optimal bang-bang protocols for
variational quantum algorithms: application to the $XXZ$ model on the square
lattice [0.0]
We find optimal protocols for transformations between the ground states of the square-lattice XXZ model for finite systems sizes.
We identify the minimum time needed for reaching an acceptable error for different system sizes.
We find that protocols within one phase are indeed geometrically correlated.
arXiv Detail & Related papers (2020-12-10T06:45:25Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.