Two-qubit atomic gates: Spatio-temporal control of Rydberg interaction
- URL: http://arxiv.org/abs/2304.14346v1
- Date: Thu, 27 Apr 2023 17:20:39 GMT
- Title: Two-qubit atomic gates: Spatio-temporal control of Rydberg interaction
- Authors: Ignacio R. Sola, Vladimir S. Malinovsky, Jaewook Ahn, Seokmin Shin, Bo
Y. Chang
- Abstract summary: We propose a protocol to prepare two-qubit entangling gates on atoms trapped at close distance.
The protocol is robust to variations in the pulse areas and the position of the atoms.
We analyze the map of the gate fidelity, which forms rotated and distorted lattices in the solution space.
- Score: 0.755972004983746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: By controlling the temporal and spatial features of light, we propose a novel
protocol to prepare two-qubit entangling gates on atoms trapped at close
distance, which could potentially speed up the operation of the gate from the
sub-micro to the nanosecond scale. The protocol is robust to variations in the
pulse areas and the position of the atoms, by virtue of the coherent properties
of a dark state, which is used to drive the population through Rydberg states.
From the time-domain perspective, the protocol generalizes the one proposed by
Jaksch and coworkers [Jaksch et al., Phys. Rev. Lett. 85, 2208 (2000)], with
three pulses that operate symmetrically in time, but with different pulse
areas. From the spatial-domain perspective, it uses structured light. We
analyze the map of the gate fidelity, which forms rotated and distorted
lattices in the solution space. Finally, we study the effect of an additional
qubit to the gate performance and propose generalizations that operate with
multi-pulse sequences.
Related papers
- Single-modulated-pulse two-qubit gates for Rydberg atoms with noncyclic
geometric control [4.902211702175651]
We present a convenient approach for implementing a two-qubit controlled-phase gate using Rydberg blockade.
The robustness of the proposal against systematic errors will be remarkably improved due to the geometric characteristic.
The proposed scheme will provide an analytical waveforms for arbitrary two-qubit gates and may have important use in the experiments of atomic arrays.
arXiv Detail & Related papers (2024-02-02T03:08:56Z) - Krotov Type Optimization of Coherent and Incoherent Controls for Open
Two-Qubit Systems [77.34726150561087]
This work considers two-qubit open quantum systems driven by coherent and incoherent controls.
Incoherent control induces time-dependent decoherence rates via time-dependent spectral density of the environment.
The system evolves according to the Gorini-Kossakowski-Sudarshan-Lindblad master equation with time-dependent coefficients.
arXiv Detail & Related papers (2023-08-11T13:17:19Z) - Spatiotemporal control of entangling gates on atomic N-qubit systems [0.0]
We use a novel optimization procedure to prepare gates in N-qubits systems.
The control allows treating a denser array of atoms, where each pulse acts on a subset of the qubits.
We characterize and classify all optimal protocols according to the mechanism of the gate.
arXiv Detail & Related papers (2023-05-10T18:37:55Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Optimal model for fewer-qubit CNOT gates with Rydberg atoms [8.01045083320546]
We report an optimal model about universal two- and three-qubit CNOT gates mediated by excitation to Rydberg states.
Compared to conventional multi-pulse piecewise schemes, our gate can be realized by simultaneous excitation of atoms to the Rydberg states.
arXiv Detail & Related papers (2021-12-16T09:54:52Z) - Long-lived Bell states in an array of optical clock qubits [0.0]
We create entanglement on an optical clock transition using optical tweezers and adiabatic Rydberg dressing.
We find that the coherence of the Bell state has a lifetime of $tau_bc = 4.2(6)$ s via parity correlations.
Such Bell states can be useful for enhancing metrological stability and bandwidth.
arXiv Detail & Related papers (2021-11-29T16:10:30Z) - Controlling the dynamics of ultracold polar molecules in optical
tweezers [0.0]
We study a prototypical scenario where two interacting polar molecules placed in separate traps are controlled using an external electric field.
This enables a quantum computing scheme in which the rotational structure is used to encode the qubit states.
arXiv Detail & Related papers (2021-10-11T18:25:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.