$\pi$-Tuning: Transferring Multimodal Foundation Models with Optimal
Multi-task Interpolation
- URL: http://arxiv.org/abs/2304.14381v3
- Date: Wed, 17 May 2023 14:53:17 GMT
- Title: $\pi$-Tuning: Transferring Multimodal Foundation Models with Optimal
Multi-task Interpolation
- Authors: Chengyue Wu, Teng Wang, Yixiao Ge, Zeyu Lu, Ruisong Zhou, Ying Shan,
Ping Luo
- Abstract summary: $pi$-Tuning is a universal parameter-efficient transfer learning method for vision, language, and vision-language tasks.
It aggregates the parameters of lightweight task-specific experts learned from similar tasks to aid the target downstream task.
- Score: 30.551283402200657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundation models have achieved great advances in multi-task learning with a
unified interface of unimodal and multimodal tasks. However, the potential of
such multi-task learners has not been exploited during transfer learning. In
this work, we present a universal parameter-efficient transfer learning method,
termed Predict-Interpolate Tuning ($\pi$-Tuning), for vision, language, and
vision-language tasks. It aggregates the parameters of lightweight
task-specific experts learned from similar tasks to aid the target downstream
task. The task similarities are predicted in a unified modality-independent
space, yielding a scalable graph to demonstrate task relationships.
$\pi$-Tuning has several appealing benefits. First, it flexibly explores both
intra- and inter-modal transferability between similar tasks to improve the
accuracy and robustness of transfer learning, especially in data-scarce
scenarios. Second, it offers a systematical solution for transfer learning with
multi-task prediction-and-then-interpolation, compatible with diverse types of
parameter-efficient experts, such as prompt and adapter. Third, an extensive
study of task-level mutual benefits on 14 unimodal and 6 multimodal datasets
shows that $\pi$-Tuning surpasses fine-tuning and other parameter-efficient
transfer learning methods both in full-shot and low-shot regimes. The task
graph also enables an in-depth interpretable analysis of task transferability
across modalities. The code will be available at
https://github.com/TencentARC/pi-Tuning.
Related papers
- PEMT: Multi-Task Correlation Guided Mixture-of-Experts Enables Parameter-Efficient Transfer Learning [28.353530290015794]
We propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning.
We conduct experiments on a broad range of tasks over 17 datasets.
arXiv Detail & Related papers (2024-02-23T03:59:18Z) - Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly.
We introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks.
Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning.
arXiv Detail & Related papers (2024-01-20T05:31:47Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - ScaLearn: Simple and Highly Parameter-Efficient Task Transfer by Learning to Scale [18.396897413970965]
ScaLearn is a simple and highly parameter-efficient two-stage MTL method.
We show that ScaLearn consistently outperforms strong baselines with a small number of transfer parameters.
arXiv Detail & Related papers (2023-10-02T14:01:36Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
Multi-task learning aims to acquire a set of functions that perform well for diverse tasks.
In this paper we draw intuition from the two extreme learning scenarios -- a single function for all tasks, and a task-specific function that ignores the other tasks.
We introduce a constrained learning formulation that enforces domain specific solutions to a central function.
arXiv Detail & Related papers (2022-10-27T16:06:47Z) - DenseMTL: Cross-task Attention Mechanism for Dense Multi-task Learning [18.745373058797714]
We propose a novel multi-task learning architecture that leverages pairwise cross-task exchange through correlation-guided attention and self-attention.
We conduct extensive experiments across three multi-task setups, showing the advantages of our approach compared to competitive baselines in both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2022-06-17T17:59:45Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z) - Small Towers Make Big Differences [59.243296878666285]
Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
arXiv Detail & Related papers (2020-08-13T10:45:31Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Understanding and Improving Information Transfer in Multi-Task Learning [14.43111978531182]
We study an architecture with a shared module for all tasks and a separate output module for each task.
We show that misalignment between task data can cause negative transfer (or hurt performance) and provide sufficient conditions for positive transfer.
Inspired by the theoretical insights, we show that aligning tasks' embedding layers leads to performance gains for multi-task training and transfer learning.
arXiv Detail & Related papers (2020-05-02T23:43:52Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
We show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales.
We propose a novel architecture, namely MTI-Net, that builds upon this finding.
arXiv Detail & Related papers (2020-01-19T21:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.