Learning Environment for the Air Domain (LEAD)
- URL: http://arxiv.org/abs/2304.14423v1
- Date: Thu, 27 Apr 2023 11:08:14 GMT
- Title: Learning Environment for the Air Domain (LEAD)
- Authors: Andreas Strand, Patrick Gorton, Martin Asprusten and Karsten Brathen
- Abstract summary: This paper presents LEAD, a system for creating and integrating intelligent air combat behavior in military simulations.
By incorporating the popular programming library and interface Gymnasium, LEAD allows users to apply readily available machine learning algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A substantial part of fighter pilot training is simulation-based and involves
computer-generated forces controlled by predefined behavior models. The
behavior models are typically manually created by eliciting knowledge from
experienced pilots, which is a time-consuming process. Despite the work put in,
the behavior models are often unsatisfactory due to their predictable nature
and lack of adaptivity, forcing instructors to spend time manually monitoring
and controlling them. Reinforcement and imitation learning pose as alternatives
to handcrafted models. This paper presents the Learning Environment for the Air
Domain (LEAD), a system for creating and integrating intelligent air combat
behavior in military simulations. By incorporating the popular programming
library and interface Gymnasium, LEAD allows users to apply readily available
machine learning algorithms. Additionally, LEAD can communicate with
third-party simulation software through distributed simulation protocols, which
allows behavior models to be learned and employed using simulation systems of
different fidelities.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - A survey of air combat behavior modeling using machine learning [0.0]
This survey explores the application of machine learning techniques for modeling air combat behavior.
Traditional behavior modeling is labor-intensive and prone to loss of essential domain knowledge between development steps.
The survey examines applications, behavior model types, prevalent machine learning methods, and the technical and human challenges in developing adaptive and realistically behaving agents.
arXiv Detail & Related papers (2024-04-22T07:54:56Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
upcoming exascale era will provide a new generation of physics simulations with high resolution.
These simulations will have a high resolution, which will impact the training of machine learning models since storing a high amount of simulation data on disk is nearly impossible.
This work presents an approach that trains a neural network concurrently to a running simulation without data on a disk.
arXiv Detail & Related papers (2022-11-09T09:55:14Z) - Learning to Fly -- a Gym Environment with PyBullet Physics for
Reinforcement Learning of Multi-agent Quadcopter Control [0.0]
We propose an open-source environment for multiple quadcopters based on the Bullet physics engine.
Its multi-agent and vision based reinforcement learning interfaces, as well as the support of realistic collisions and aerodynamic effects, make it, to the best of our knowledge, a first of its kind.
arXiv Detail & Related papers (2021-03-03T02:47:59Z) - Sim-Env: Decoupling OpenAI Gym Environments from Simulation Models [0.0]
Reinforcement learning (RL) is one of the most active fields of AI research.
Development methodology still lags behind, with a severe lack of standard APIs to foster the development of RL applications.
We present a workflow and tools for the decoupled development and maintenance of multi-purpose agent-based models and derived single-purpose reinforcement learning environments.
arXiv Detail & Related papers (2021-02-19T09:25:21Z) - Adaptive Synthetic Characters for Military Training [0.9802137009065037]
Behaviors of synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models.
This paper introduces a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior.
arXiv Detail & Related papers (2021-01-06T18:45:48Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.