A survey of air combat behavior modeling using machine learning
- URL: http://arxiv.org/abs/2404.13954v1
- Date: Mon, 22 Apr 2024 07:54:56 GMT
- Title: A survey of air combat behavior modeling using machine learning
- Authors: Patrick Ribu Gorton, Andreas Strand, Karsten Brathen,
- Abstract summary: This survey explores the application of machine learning techniques for modeling air combat behavior.
Traditional behavior modeling is labor-intensive and prone to loss of essential domain knowledge between development steps.
The survey examines applications, behavior model types, prevalent machine learning methods, and the technical and human challenges in developing adaptive and realistically behaving agents.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the recent advances in machine learning, creating agents that behave realistically in simulated air combat has become a growing field of interest. This survey explores the application of machine learning techniques for modeling air combat behavior, motivated by the potential to enhance simulation-based pilot training. Current simulated entities tend to lack realistic behavior, and traditional behavior modeling is labor-intensive and prone to loss of essential domain knowledge between development steps. Advancements in reinforcement learning and imitation learning algorithms have demonstrated that agents may learn complex behavior from data, which could be faster and more scalable than manual methods. Yet, making adaptive agents capable of performing tactical maneuvers and operating weapons and sensors still poses a significant challenge. The survey examines applications, behavior model types, prevalent machine learning methods, and the technical and human challenges in developing adaptive and realistically behaving agents. Another challenge is the transfer of agents from learning environments to military simulation systems and the consequent demand for standardization. Four primary recommendations are presented regarding increased emphasis on beyond-visual-range scenarios, multi-agent machine learning and cooperation, utilization of hierarchical behavior models, and initiatives for standardization and research collaboration. These recommendations aim to address current issues and guide the development of more comprehensive, adaptable, and realistic machine learning-based behavior models for air combat applications.
Related papers
- Grounded Answers for Multi-agent Decision-making Problem through Generative World Model [27.263093790379024]
generative models often produce sketchy and misleading solutions for complex multi-agent decision-making problems.
We show a paradigm that integrates a language-guided simulator into the multi-agent reinforcement learning pipeline to enhance the generated answer.
In particular, it can generate consistent interaction sequences and explainable reward functions at interaction states, opening the path for training generative models of the future.
arXiv Detail & Related papers (2024-10-03T16:49:59Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - PASTA: Pretrained Action-State Transformer Agents [10.654719072766495]
Self-supervised learning has brought about a revolutionary paradigm shift in various computing domains.
Recent approaches involve pre-training transformer models on vast amounts of unlabeled data.
In reinforcement learning, researchers have recently adapted these approaches, developing models pre-trained on expert trajectories.
arXiv Detail & Related papers (2023-07-20T15:09:06Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - Learning Environment for the Air Domain (LEAD) [0.0]
This paper presents LEAD, a system for creating and integrating intelligent air combat behavior in military simulations.
By incorporating the popular programming library and interface Gymnasium, LEAD allows users to apply readily available machine learning algorithms.
arXiv Detail & Related papers (2023-04-27T11:08:14Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
We present a simulation platform for a hybrid transportation system that includes both human-driven and automated vehicles.
We decompose the human driving task and offer a modular approach to simulating a large-scale traffic scenario.
We analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics.
arXiv Detail & Related papers (2022-08-10T19:59:16Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRL is a framework for solving sequential decision-making problems.
It exploits the combination of reinforcement learning and latent variable generative models.
We experimentally determine the characteristics of generative models that have most influence on the performance of the final policy training.
arXiv Detail & Related papers (2022-04-18T22:02:32Z) - Adaptive Synthetic Characters for Military Training [0.9802137009065037]
Behaviors of synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models.
This paper introduces a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior.
arXiv Detail & Related papers (2021-01-06T18:45:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.