論文の概要: HyperMODEST: Self-Supervised 3D Object Detection with Confidence Score
Filtering
- arxiv url: http://arxiv.org/abs/2304.14446v2
- Date: Thu, 1 Jun 2023 20:18:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 19:29:20.735299
- Title: HyperMODEST: Self-Supervised 3D Object Detection with Confidence Score
Filtering
- Title(参考訳): HyperMODEST:信頼スコアフィルタリングによる自己監督型3次元物体検出
- Authors: Jenny Xu and Steven L. Waslander
- Abstract要約: 現在のLiDARベースの自律走行用3Dオブジェクト検出器は、ほとんど完全に人間の注釈付きデータに基づいて訓練されている。
MODESTはラベルなしで3Dオブジェクト検出器を訓練する最初の試みである。
本稿では,自己学習プロセスを大幅に高速化し,特定のデータセットのチューニングを必要としない普遍的手法を提案する。
- 参考スコア(独自算出の注目度): 9.14477900515147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current LiDAR-based 3D object detectors for autonomous driving are almost
entirely trained on human-annotated data collected in specific geographical
domains with specific sensor setups, making it difficult to adapt to a
different domain. MODEST is the first work to train 3D object detectors without
any labels. Our work, HyperMODEST, proposes a universal method implemented on
top of MODEST that can largely accelerate the self-training process and does
not require tuning on a specific dataset. We filter intermediate pseudo-labels
used for data augmentation with low confidence scores. On the nuScenes dataset,
we observe a significant improvement of 1.6% in AP BEV in 0-80m range at
IoU=0.25 and an improvement of 1.7% in AP BEV in 0-80m range at IoU=0.5 while
only using one-fifth of the training time in the original approach by MODEST.
On the Lyft dataset, we also observe an improvement over the baseline during
the first round of iterative self-training. We explore the trade-off between
high precision and high recall in the early stage of the self-training process
by comparing our proposed method with two other score filtering methods:
confidence score filtering for pseudo-labels with and without static label
retention. The code and models of this work are available at
https://github.com/TRAILab/HyperMODEST
- Abstract(参考訳): 現在のLiDARベースの自動運転用3Dオブジェクト検出器は、特定の地理的領域で収集された人間の注釈付きデータにほぼ完全に訓練されているため、異なる領域に適応することは困難である。
MODESTはラベルなしで3Dオブジェクト検出器を訓練する最初の試みである。
我々の研究であるHyperMODESTは、MODESTの上に実装された普遍的な手法を提案しており、これは自己学習プロセスを大幅に加速し、特定のデータセットのチューニングを必要としない。
信頼度の低いデータ拡張に用いる中間擬似ラベルをフィルタリングする。
nuScenesデータセットでは、IoU=0.25で0-80mでAP BEVが1.6%、IoU=0.5で0-80mでAP BEVが1.7%向上し、MODESTによるトレーニング時間の5分の1しか使われていない。
Lyftデータセットでは、第1ラウンドの反復的自己トレーニングのベースラインの改善も観察しています。
本研究では,提案手法と他の2つのスコアフィルタリング手法,すなわち静的ラベル保持の有無を考慮した疑似ラベルの信頼度スコアフィルタリングを比較し,自己学習プロセスの初期段階における高精度と高リコールのトレードオフを検討する。
この作業のコードとモデルはhttps://github.com/trailab/hypermodestで入手できる。
関連論文リスト
- Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps [8.897884780881535]
LiDARベースの3Dオブジェクト検出器は、センサーの設定が異なるターゲットドメインにうまく適応できないことが多い。
近年の研究では、トレーニング済みのバックボーンは大規模でラベルのないLiDARフレームで自己管理的に学習できることが示唆されている。
本研究では,対象データに制限のある事前学習モデルを適用するために,DADT(Domain Adaptive Distill-Tuning)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T08:22:42Z) - Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection [52.66283064389691]
最先端の3Dオブジェクト検出器は、しばしば大量のラベル付きデータセットで訓練される。
近年の研究では、ラベル付きデータによる自己教師付き事前学習が、ラベル付きラベルによる検出精度を向上させることが示されている。
組合わせRGBとLiDARデータからゼロショット3Dバウンディングボックスを生成するためのシェルフ制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-14T15:21:57Z) - 3DMOTFormer: Graph Transformer for Online 3D Multi-Object Tracking [15.330384668966806]
最先端の3Dマルチオブジェクト追跡(MOT)アプローチは通常、Kalman Filterのような非学習モデルベースのアルゴリズムに依存している。
本稿では3DMOTFormerを提案する。この3D MOTフレームワークはトランスフォーマーアーキテクチャをベースに構築されている。
提案手法は, nuScenesバリデーションとテストスプリットでそれぞれ71.2%, AMOTA68.2%を達成している。
論文 参考訳(メタデータ) (2023-08-12T19:19:58Z) - AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation [64.9230895853942]
ドメインの一般化は、ターゲットのドメイン情報を活用することなく、任意に困難にすることができる。
この問題に対処するためにテスト時適応(TTA)手法が提案されている。
本研究では,テスト時間適応(AdaNPC)を行うためにNon-Parametricを採用する。
論文 参考訳(メタデータ) (2023-04-25T04:23:13Z) - SSDA3D: Semi-supervised Domain Adaptation for 3D Object Detection from
Point Cloud [125.9472454212909]
本稿では,3次元物体検出(SSDA3D)のための半改良型領域適応法を提案する。
SSDA3Dはドメイン間適応ステージとドメイン内一般化ステージを含む。
実験の結果,10%のラベル付きターゲットデータしか持たないSSDA3Dは,100%のターゲットラベルを持つ完全教師付きオラクルモデルを上回ることができることがわかった。
論文 参考訳(メタデータ) (2022-12-06T09:32:44Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - FAST3D: Flow-Aware Self-Training for 3D Object Detectors [12.511087244102036]
最先端の自己学習アプローチは、主に自律運転データの時間的性質を無視している。
連続したLiDAR点雲上の3次元物体検出器の教師なし領域適応を可能にするフロー認識型自己学習法を提案する。
以上の結果から,先進的なドメイン知識がなければ,最先端技術よりも大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2021-10-18T14:32:05Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
本稿では,3次元物体検出におけるコンテキストモデリングのための2種類の自己注意法を提案する。
まず,現状のbev,voxel,ポイントベース検出器にペアワイズ自着機構を組み込む。
次に,ランダムにサンプリングされた位置の変形を学習することにより,最も代表的な特徴のサブセットをサンプリングするセルフアテンション変種を提案する。
論文 参考訳(メタデータ) (2021-01-07T18:30:32Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z) - 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object
Detection [76.42897462051067]
3DIoUMatchは屋内および屋外の場面両方に適当3D目的の検出のための新しい半監視された方法です。
教師と教師の相互学習の枠組みを活用し,ラベル付けされていない列車の情報を擬似ラベルの形で伝達する。
本手法は,ScanNetとSUN-RGBDのベンチマークにおける最先端の手法を,全てのラベル比で有意差で継続的に改善する。
論文 参考訳(メタデータ) (2020-12-08T11:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。