論文の概要: Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps
- arxiv url: http://arxiv.org/abs/2410.01319v1
- Date: Wed, 2 Oct 2024 08:22:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:49:06.906569
- Title: Finetuning Pre-trained Model with Limited Data for LiDAR-based 3D Object Detection by Bridging Domain Gaps
- Title(参考訳): ブリッジング領域ギャップによるLiDARに基づく3次元物体検出のための限定データ付き微調整事前学習モデル
- Authors: Jiyun Jang, Mincheol Chang, Jongwon Park, Jinkyu Kim,
- Abstract要約: LiDARベースの3Dオブジェクト検出器は、センサーの設定が異なるターゲットドメインにうまく適応できないことが多い。
近年の研究では、トレーニング済みのバックボーンは大規模でラベルのないLiDARフレームで自己管理的に学習できることが示唆されている。
本研究では,対象データに制限のある事前学習モデルを適用するために,DADT(Domain Adaptive Distill-Tuning)と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 8.897884780881535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-based 3D object detectors have been largely utilized in various applications, including autonomous vehicles or mobile robots. However, LiDAR-based detectors often fail to adapt well to target domains with different sensor configurations (e.g., types of sensors, spatial resolution, or FOVs) and location shifts. Collecting and annotating datasets in a new setup is commonly required to reduce such gaps, but it is often expensive and time-consuming. Recent studies suggest that pre-trained backbones can be learned in a self-supervised manner with large-scale unlabeled LiDAR frames. However, despite their expressive representations, they remain challenging to generalize well without substantial amounts of data from the target domain. Thus, we propose a novel method, called Domain Adaptive Distill-Tuning (DADT), to adapt a pre-trained model with limited target data (approximately 100 LiDAR frames), retaining its representation power and preventing it from overfitting. Specifically, we use regularizers to align object-level and context-level representations between the pre-trained and finetuned models in a teacher-student architecture. Our experiments with driving benchmarks, i.e., Waymo Open dataset and KITTI, confirm that our method effectively finetunes a pre-trained model, achieving significant gains in accuracy.
- Abstract(参考訳): LiDARをベースとした3Dオブジェクト検出器は、自動運転車や移動ロボットなど、さまざまな用途で広く利用されている。
しかし、LiDARベースの検出器は、センサー構成の異なるターゲットドメイン(例えば、センサーの種類、空間分解能、FOV)や位置シフトによく適応しないことが多い。
新しいセットアップでのデータセットの収集と注釈付けは、このようなギャップを減らすために一般的に必要だが、しばしば高価で時間を要する。
近年の研究では、トレーニング済みのバックボーンは大規模でラベルのないLiDARフレームで自己管理的に学習できることが示唆されている。
しかし、表現力のある表現にもかかわらず、ターゲット領域からかなりの量のデータを得ることなく、適切に一般化することは依然として困難である。
そこで本稿では,DADT (Domain Adaptive Distill-Tuning) と呼ばれる新しい手法を提案する。
具体的には、教師-学生アーキテクチャにおける事前訓練されたモデルと微調整されたモデル間のオブジェクトレベルとコンテキストレベルの表現の整合化に正規化器を用いる。
ドライビングベンチマーク,すなわちWaymo OpenデータセットとKITTIを用いた実験により,本手法がトレーニング済みモデルを効果的に微調整し,精度を大幅に向上することを確認した。
関連論文リスト
- Shelf-Supervised Cross-Modal Pre-Training for 3D Object Detection [52.66283064389691]
最先端の3Dオブジェクト検出器は、しばしば大量のラベル付きデータセットで訓練される。
近年の研究では、ラベル付きデータによる自己教師付き事前学習が、ラベル付きラベルによる検出精度を向上させることが示されている。
組合わせRGBとLiDARデータからゼロショット3Dバウンディングボックスを生成するためのシェルフ制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-14T15:21:57Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
ディープラーニングの手法は注釈付きデータに大きく依存しており、ドメインの一般化の問題に直面することが多い。
LiDAR-CSデータセットは、リアルタイムトラフィックにおける3Dオブジェクト検出の領域におけるセンサ関連ギャップに対処する最初のデータセットである。
論文 参考訳(メタデータ) (2023-01-29T19:10:35Z) - LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object
Detection [96.63947479020631]
多くの現実世界の応用において、大量生産されたロボットや車両が使用するLiDARポイントは通常、大規模な公開データセットよりもビームが少ない。
異なるLiDARビームによって誘導される領域ギャップをブリッジして3次元物体検出を行うLiDAR蒸留法を提案する。
論文 参考訳(メタデータ) (2022-03-28T17:59:02Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - FAST3D: Flow-Aware Self-Training for 3D Object Detectors [12.511087244102036]
最先端の自己学習アプローチは、主に自律運転データの時間的性質を無視している。
連続したLiDAR点雲上の3次元物体検出器の教師なし領域適応を可能にするフロー認識型自己学習法を提案する。
以上の結果から,先進的なドメイン知識がなければ,最先端技術よりも大幅に向上することが示唆された。
論文 参考訳(メタデータ) (2021-10-18T14:32:05Z) - Unsupervised Domain Adaptation for LiDAR Panoptic Segmentation [5.745037250837124]
このドメインギャップを埋めるためには、教師なしのドメイン適応(UDA)技術が不可欠です。
We propose AdaptLPS, a novel UDA approach for LiDAR panoptic segmentation。
以上の結果から,AdaptLPSはPQスコアにおいて,既存のUDAアプローチよりも最大6.41pp高い性能を示した。
論文 参考訳(メタデータ) (2021-09-30T17:30:43Z) - Understanding Self-Training for Gradual Domain Adaptation [107.37869221297687]
段階的なドメイン適応は、対象領域へ徐々にシフトするラベルのないデータのみを与えられたソースドメインで訓練された初期分類器を適応させることが目的である。
目標領域への直接適応が非有界誤差をもたらすような設定下において、段階的なシフトを伴う自己学習の誤差に対する最初の非無空上界を証明した。
この理論解析はアルゴリズムの洞察を導き、無限のデータを持つ場合でも正規化とラベルのシャープ化が不可欠であることを強調し、より小さなワッサーシュタイン無限距離のシフトに対して自己学習が特にうまく働くことを示唆している。
論文 参考訳(メタデータ) (2020-02-26T08:59:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。