論文の概要: A Systematization of Cybersecurity Regulations, Standards and Guidelines
for the Healthcare Sector
- arxiv url: http://arxiv.org/abs/2304.14955v1
- Date: Fri, 28 Apr 2023 16:19:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-01 13:33:38.183622
- Title: A Systematization of Cybersecurity Regulations, Standards and Guidelines
for the Healthcare Sector
- Title(参考訳): 医療分野におけるサイバーセキュリティ規制・基準・ガイドラインの体系化
- Authors: Maria Patrizia Carello, Alberto Marchetti Spaccamela, Leonardo
Querzoni, Marco Angelini
- Abstract要約: 本稿では,医療分野に関連する重要なサイバーセキュリティ文書の体系化に寄与する。
我々は49の重要文書を収集し、NISTサイバーセキュリティフレームワークを使用して鍵情報を分類した。
- 参考スコア(独自算出の注目度): 5.121113572240309
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The growing adoption of IT solutions in the healthcare sector is leading to a
steady increase in the number of cybersecurity incidents. As a result,
organizations worldwide have introduced regulations, standards, and best
practices to address cybersecurity and data protection issues in this sector.
However, the application of this large corpus of documents presents operational
difficulties, and operators continue to lag behind in resilience to cyber
attacks. This paper contributes a systematization of the significant
cybersecurity documents relevant to the healthcare sector. We collected the 49
most significant documents and used the NIST cybersecurity framework to
categorize key information and support the implementation of cybersecurity
measures.
- Abstract(参考訳): 医療分野におけるITソリューションの採用が増加し、サイバーセキュリティインシデントの増加が着実に進んでいる。
その結果、世界中の組織が、このセクターにおけるサイバーセキュリティとデータ保護の問題に対処するための規制、基準、ベストプラクティスを導入しました。
しかし、この大規模な文書の応用は運用上の困難を呈し、オペレーターはサイバー攻撃に対するレジリエンスに遅れを取っている。
本稿では,医療分野に関連する重要なサイバーセキュリティ文書の体系化に寄与する。
我々は49の最も重要な文書を収集し,nistサイバーセキュリティフレームワークを用いて重要情報を分類し,サイバーセキュリティ対策の実施を支援する。
関連論文リスト
- Towards AI-enabled Cyber Threat Assessment in the Health Sector [0.0]
このプロジェクトの目的は、医療機関の外部からセキュリティ関連情報を収集するAI対応プラットフォームを導入することである。
このプラットフォームはリスクスコアを提供し、医療機関の意思決定者をサポートし、セキュリティ対策のための投資選択を最適化する。
論文 参考訳(メタデータ) (2024-09-19T13:34:34Z) - Securing The Future Of Healthcare: Building A Resilient Defense System For Patient Data Protection [0.0]
この研究は、勾配ボオスティング機械学習モデルを用いて、医療データ漏洩の深刻度を予測する。
その結果、ハッキングとITインシデントは、医療業界で最も一般的なタイプの違反であることがわかった。
モデル評価の結果,勾配向上アルゴリズムは良好に動作することがわかった。
論文 参考訳(メタデータ) (2024-07-23T04:25:35Z) - A Security Assessment tool for Quantum Threat Analysis [34.94301200620856]
量子コンピューティングの急速な進歩は、セキュアな通信、デジタル認証、情報暗号化に使われる多くの現在のセキュリティアルゴリズムに重大な脅威をもたらす。
十分に強力な量子コンピュータは、これらのアルゴリズムの脆弱性を悪用し、安全でないトランジットでデータをレンダリングする可能性がある。
この研究は、企業のための量子アセスメントツールを開発し、セキュリティプロトコルをポスト量子世界へ移行するための適切なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2024-07-18T13:58:34Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
自動車業界は、車両とデータの両方を潜在的な脅威から保護するために、堅牢なサイバーセキュリティ対策を採用することを余儀なくされている。
自動車のサイバーセキュリティの未来は、先進的な保護措置と、すべての利害関係者の協力的努力の継続的な発展にある。
論文 参考訳(メタデータ) (2024-06-29T16:07:48Z) - Security in IS and social engineering -- an overview and state of the art [0.6345523830122166]
すべてのプロセスのデジタル化とIoTデバイスのオープン化は、サイバー犯罪という新たな犯罪形態の出現を促している。
こうした攻撃の悪意は、ユーザーがサイバー攻撃のファシリテーターになるという事実にある。
予測方法、弱い信号と外れ値の特定、早期発見、コンピュータ犯罪への迅速な対応が優先課題であり、予防と協力のアプローチが必要である。
論文 参考訳(メタデータ) (2024-06-17T13:25:27Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - Assessing The Effectiveness Of Current Cybersecurity Regulations And Policies In The US [0.0]
本研究は、2000年から2022年までのサイバー犯罪データの傾向を分析し、これらの規制が異なる分野に与える影響を評価する。
この発見は、サイバー脅威の進化に直面する課題、成功、継続的な適応の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-17T15:26:55Z) - Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models [41.068780235482514]
本稿では,Large Language Models (LLMs) のプログラミングアシスタントとしてのサイバーセキュリティを促進するために開発された,包括的なベンチマークであるCyberSecEvalを提案する。
CyberSecEvalは、2つの重要なセキュリティ領域におけるLSMの徹底的な評価を提供する。
論文 参考訳(メタデータ) (2023-12-07T22:07:54Z) - White paper on cybersecurity in the healthcare sector. The HEIR solution [1.3717071154980571]
医療記録や財務情報を含む患者データは危険にさらされており、個人情報の盗難や患者の安全上の懸念につながる可能性がある。
HEIRプロジェクトは包括的なサイバーセキュリティアプローチを提供し、さまざまな規制フレームワークからセキュリティ機能を促進する。
これらの対策は、デジタルヘルスのセキュリティを強化し、機密性の高い患者データを保護し、セキュアなデータアクセスとプライバシ認識技術を促進することを目的としている。
論文 参考訳(メタデータ) (2023-10-16T07:27:57Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。