論文の概要: White paper on cybersecurity in the healthcare sector. The HEIR solution
- arxiv url: http://arxiv.org/abs/2310.10139v1
- Date: Mon, 16 Oct 2023 07:27:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 02:23:27.316144
- Title: White paper on cybersecurity in the healthcare sector. The HEIR solution
- Title(参考訳): 医療分野におけるサイバーセキュリティに関する白書 HEIRソリューション
- Authors: Konstantinos Lampropoulos, Apostolis Zarras, Eftychia Lakka, Polyanthi Barmpaki, Kostas Drakonakis, Manos Athanatos, Herve Debar, Andreas Alexopoulos, Aristeidis Sotiropoulos, George Tsakirakis, Nikos Dimakopoulos, Dimitris Tsolovos, Matthias Pocs, Michalis Smyrlis, Ioannis Basdekis, Georgios Spanoudakis, Ovidiu Mihaila, Bogdan Prelipcean, Eliot Salant, Sotiris Athanassopoulos, Petros Papachristou, Ioannis Ladakis, John Chang, Evangelos Floros, Konstantinos Smyrlis, Rouven Besters, Pietro Randine, Karianna Fjeld Lovaas, John Cooper, Iulia Ilie, Gabriel Danciu, Marwan Darwish Khabbaz,
- Abstract要約: 医療記録や財務情報を含む患者データは危険にさらされており、個人情報の盗難や患者の安全上の懸念につながる可能性がある。
HEIRプロジェクトは包括的なサイバーセキュリティアプローチを提供し、さまざまな規制フレームワークからセキュリティ機能を促進する。
これらの対策は、デジタルヘルスのセキュリティを強化し、機密性の高い患者データを保護し、セキュアなデータアクセスとプライバシ認識技術を促進することを目的としている。
- 参考スコア(独自算出の注目度): 1.3717071154980571
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The healthcare sector is increasingly vulnerable to cyberattacks due to its growing digitalization. Patient data, including medical records and financial information, are at risk, potentially leading to identity theft and patient safety concerns. The European Union and other organizations identify key areas for healthcare system improvement, yet the industry still grapples with inadequate security practices. In response, the HEIR project offers a comprehensive cybersecurity approach, promoting security features from various regulatory frameworks and introducing tools such as the Secure Healthcare Framework and Risk Assessment for Medical Applications (RAMA). These measures aim to enhance digital health security and protect sensitive patient data while facilitating secure data access and privacy-aware techniques. In a rapidly evolving threat landscape, HEIR presents a promising framework for healthcare cybersecurity.
- Abstract(参考訳): 医療セクターは、デジタル化が進んでいるため、サイバー攻撃にますます脆弱になっている。
医療記録や財務情報を含む患者データは危険にさらされており、個人情報の盗難や患者の安全上の懸念につながる可能性がある。
欧州連合(EU)や他の組織は、医療システム改善の鍵となる領域を特定できるが、業界はいまだに不十分なセキュリティプラクティスに悩まされている。
HEIRプロジェクトは、包括的なサイバーセキュリティアプローチを提供し、さまざまな規制フレームワークからのセキュリティ機能を促進し、セキュアヘルスケアフレームワークや医療アプリケーションに対するリスクアセスメント(RAMA)などのツールを導入している。
これらの対策は、デジタルヘルスのセキュリティを強化し、機密性の高い患者データを保護し、セキュアなデータアクセスとプライバシ認識技術を促進することを目的としている。
HEIRは、急速に進化する脅威の世界で、医療サイバーセキュリティのための有望なフレームワークを提供する。
関連論文リスト
- Enhancing Guardrails for Safe and Secure Healthcare AI [0.0]
私は、医療特有のニーズに合うように、Nvidia NeMo Guardrailsのような既存のガードレールフレームワークの強化を提案します。
私は、医療におけるAIの安全で信頼性が高く正確な使用を確実にし、誤情報リスクを軽減し、患者の安全性を向上させることを目指しています。
論文 参考訳(メタデータ) (2024-09-25T06:30:06Z) - Towards AI-enabled Cyber Threat Assessment in the Health Sector [0.0]
このプロジェクトの目的は、医療機関の外部からセキュリティ関連情報を収集するAI対応プラットフォームを導入することである。
このプラットフォームはリスクスコアを提供し、医療機関の意思決定者をサポートし、セキュリティ対策のための投資選択を最適化する。
論文 参考訳(メタデータ) (2024-09-19T13:34:34Z) - SoK: Security and Privacy Risks of Medical AI [14.592921477833848]
テクノロジーと医療の統合は、人工知能と機械学習を利用したソフトウェアシステムが、医療製品やサービスの不可欠なコンポーネントとなった新しい時代に幕を閉じた。
本稿では、医療におけるAI/MLアプリケーションによるセキュリティとプライバシの脅威について検討する。
論文 参考訳(メタデータ) (2024-09-11T16:59:58Z) - Securing The Future Of Healthcare: Building A Resilient Defense System For Patient Data Protection [0.0]
この研究は、勾配ボオスティング機械学習モデルを用いて、医療データ漏洩の深刻度を予測する。
その結果、ハッキングとITインシデントは、医療業界で最も一般的なタイプの違反であることがわかった。
モデル評価の結果,勾配向上アルゴリズムは良好に動作することがわかった。
論文 参考訳(メタデータ) (2024-07-23T04:25:35Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
自動車業界は、車両とデータの両方を潜在的な脅威から保護するために、堅牢なサイバーセキュリティ対策を採用することを余儀なくされている。
自動車のサイバーセキュリティの未来は、先進的な保護措置と、すべての利害関係者の協力的努力の継続的な発展にある。
論文 参考訳(メタデータ) (2024-06-29T16:07:48Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - A Systematization of Cybersecurity Regulations, Standards and Guidelines
for the Healthcare Sector [5.121113572240309]
本稿では,医療分野に関連する重要なサイバーセキュリティ文書の体系化に寄与する。
我々は49の重要文書を収集し、NISTサイバーセキュリティフレームワークを使用して鍵情報を分類した。
論文 参考訳(メタデータ) (2023-04-28T16:19:21Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - I-Health: Leveraging Edge Computing and Blockchain for Epidemic
Management [36.55809341110476]
エピデミックな状況は、厳密な時間制約の中で、異なる場所やエンティティから集中的なデータ収集と管理を要求する。
本稿では, 独自の医療システムにおいて, 多様なeヘルスエンティティを集約することを目的とした, インテリジェントヘルス(Iヘルス)システムを提案する。
特に,早期発見,遠隔監視,迅速な緊急対応が可能な,患者自動監視方式をエッジに設計する。
論文 参考訳(メタデータ) (2020-12-18T23:41:00Z) - Digital Ariadne: Citizen Empowerment for Epidemic Control [55.41644538483948]
新型コロナウイルスの危機は、1918年のH1N1パンデミック以来、公衆衛生にとって最も危険な脅威である。
技術支援による位置追跡と接触追跡は、広く採用されれば、感染症の拡散を抑えるのに役立つかもしれない。
個人のデバイス上での自発的な位置情報とBluetoothトラッキングに基づいて、"diAry"や"digital Ariadne"と呼ばれるツールを提示する。
論文 参考訳(メタデータ) (2020-04-16T15:53:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。