論文の概要: Flow Away your Differences: Conditional Normalizing Flows as an
Improvement to Reweighting
- arxiv url: http://arxiv.org/abs/2304.14963v1
- Date: Fri, 28 Apr 2023 16:33:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-01 13:21:45.375511
- Title: Flow Away your Differences: Conditional Normalizing Flows as an
Improvement to Reweighting
- Title(参考訳): 相違点の流れ:再重み付けの改善を目的とした条件付き正規化フロー
- Authors: Malte Algren, Tobias Golling, Manuel Guth, Chris Pollard, John Andrew
Raine
- Abstract要約: 本稿では, 条件分布の所望の変化を考慮に入れた再重み付け手法の代替手法を提案する。
条件付き正規化フローを用いて、完全条件付き確率分布を学習する。
この例では、ソースとターゲットの分布を同一のサンプルサイズで再重み付けする手法よりも、統計精度が最大3倍に向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an alternative to reweighting techniques for modifying
distributions to account for a desired change in an underlying conditional
distribution, as is often needed to correct for mis-modelling in a simulated
sample. We employ conditional normalizing flows to learn the full conditional
probability distribution from which we sample new events for conditional values
drawn from the target distribution to produce the desired, altered
distribution. In contrast to common reweighting techniques, this procedure is
independent of binning choice and does not rely on an estimate of the density
ratio between two distributions.
In several toy examples we show that normalizing flows outperform reweighting
approaches to match the distribution of the target.We demonstrate that the
corrected distribution closes well with the ground truth, and a statistical
uncertainty on the training dataset can be ascertained with bootstrapping. In
our examples, this leads to a statistical precision up to three times greater
than using reweighting techniques with identical sample sizes for the source
and target distributions. We also explore an application in the context of high
energy particle physics.
- Abstract(参考訳): 模擬サンプルにおける誤モデリングの修正にしばしば必要となる条件分布の所望の変化を考慮に入れた分布の修正手法の代替として,再重み付け手法を提案する。
条件付き正規化フローを用いて条件付き確率分布を学習し、対象分布から引き出された条件付き値の新しい事象をサンプリングし、所望の変化した分布を生成する。
一般的な再重み付け手法とは対照的に、この手法は双対選択とは独立であり、2つの分布間の密度比の推定に依存しない。
いくつかのおもちゃの例では、正規化フローは目標の分布に合うように再重み付け手法より優れており、補正された分布は基礎的な真実とよく一致し、トレーニングデータセット上の統計的不確実性はブートストラップによって確認できることを示す。
この例では、ソースとターゲットの分布を同一のサンプルサイズで再重み付けする手法よりも、統計精度が最大3倍に向上する。
また、高エネルギー粒子物理学の文脈における応用についても検討する。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Deep conditional distribution learning via conditional Föllmer flow [3.227277661633986]
本研究では,条件F"ollmer Flow"という条件分布を学習するための常微分方程式(ODE)に基づく深部生成手法を提案する。
効率的な実装のために、我々は、深層ニューラルネットワークを用いて非パラメトリックに速度場を推定するオイラー法を用いて流れを判別する。
論文 参考訳(メタデータ) (2024-02-02T14:52:10Z) - Reliable amortized variational inference with physics-based latent
distribution correction [0.4588028371034407]
ニューラルネットワークは、既存のモデルとデータのペアの後方分布を近似するように訓練される。
このアプローチの精度は、高忠実度トレーニングデータの可用性に依存する。
補正ステップは, ソース実験数の変化, ノイズ分散, 先行分布の変化に対して, 償却された変分推論の頑健さを向上することを示す。
論文 参考訳(メタデータ) (2022-07-24T02:38:54Z) - Robust Calibration with Multi-domain Temperature Scaling [86.07299013396059]
我々は,複数の領域からのデータを活用することで,分散シフトを処理するシステムキャリブレーションモデルを開発した。
提案手法は,分布シフト時のキャリブレーションを改善するために,領域内のロバスト性を利用する。
論文 参考訳(メタデータ) (2022-06-06T17:32:12Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
正規化フローの微分同相性に基づいて、閉領域上の累積分布関数(CDF)を推定する。
一般的なフローアーキテクチャとUCIデータセットに関する実験は,従来の推定器と比較して,サンプル効率が著しく向上したことを示している。
論文 参考訳(メタデータ) (2022-02-23T06:11:49Z) - Wasserstein Generative Learning of Conditional Distribution [6.051520664893158]
条件分布学習のためのワッサーシュタイン生成手法を提案する。
提案手法により生成された条件付きサンプリング分布の非漸近誤差境界を確立する。
論文 参考訳(メタデータ) (2021-12-19T01:55:01Z) - Adversarial sampling of unknown and high-dimensional conditional
distributions [0.0]
本稿では, GAN (Generative Adversarial Network) と呼ばれるデータ駆動方式を用いて, サンプリング法と基礎分布の推定を行う。
GANは、2つの競合するニューラルネットワークをトレーニングし、トレーニングセット分布からサンプルを効果的に生成できるネットワークを生成する。
提案アルゴリズムのすべてのバージョンは, 対象条件分布を, サンプルの品質に最小限の影響で効果的にサンプリングできることが示されている。
論文 参考訳(メタデータ) (2021-11-08T12:23:38Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。