The FAIRy Tale of Genetic Algorithms
- URL: http://arxiv.org/abs/2305.00238v1
- Date: Sat, 29 Apr 2023 11:36:09 GMT
- Title: The FAIRy Tale of Genetic Algorithms
- Authors: Fahad Maqbool, Muhammad Saad Razzaq, Hajira Jabeen
- Abstract summary: We have extended Findable, Accessible, Interoperable and Reusable (FAIR) data principles to enable Genetic and reusability of algorithms.
We have presented an overview of methodological developments and variants of GA that makes it challenging to reproduce or even find the right source.
This work can be extended to numerous machine learning algorithms/methods.
- Score: 1.0957528713294875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Genetic Algorithm (GA) is a popular meta-heuristic evolutionary algorithm
that uses stochastic operators to find optimal solution and has proved its
effectiveness in solving many complex optimization problems (such as
classification, optimization, and scheduling). However, despite its
performance, popularity and simplicity, not much attention has been paid
towards reproducibility and reusability of GA. In this paper, we have extended
Findable, Accessible, Interoperable and Reusable (FAIR) data principles to
enable the reproducibility and reusability of algorithms. We have chosen GA as
a usecase to the demonstrate the applicability of the proposed principles. Also
we have presented an overview of methodological developments and variants of GA
that makes it challenging to reproduce or even find the right source.
Additionally, to enable FAIR algorithms, we propose a vocabulary (i.e. $evo$)
using light weight RDF format, facilitating the reproducibility. Given the
stochastic nature of GAs, this work can be extended to numerous Optimization
and machine learning algorithms/methods.
Related papers
- Optimizing Feature Selection with Genetic Algorithms: A Review of Methods and Applications [4.395397502990339]
Genetic algorithms (GAs) have been proposed to provide remedies for drawbacks by avoiding local optima and improving the selection process itself.
This manuscript presents a sweeping review on GA-based feature selection techniques in applications and their effectiveness across different domains.
arXiv Detail & Related papers (2024-09-05T22:28:42Z) - GARA: A novel approach to Improve Genetic Algorithms' Accuracy and Efficiency by Utilizing Relationships among Genes [1.7226572355808027]
We propose Gene Regulatory Genetic Algorithm (GRGA), which is the first time to utilize relationships among genes for improving GA's accuracy and efficiency.
We use a directed multipartite graph encapsulating the solution space, called RGGR, where each node corresponds to a gene in the solution and the edge represents the relationship between adjacent nodes.
The obtained RGGR is then employed to determine appropriate loci of crossover and mutation operators, thereby directing the evolutionary process toward faster and better convergence.
arXiv Detail & Related papers (2024-04-28T08:33:39Z) - Discovering General Reinforcement Learning Algorithms with Adversarial
Environment Design [54.39859618450935]
We show that it is possible to meta-learn update rules, with the hope of discovering algorithms that can perform well on a wide range of RL tasks.
Despite impressive initial results from algorithms such as Learned Policy Gradient (LPG), there remains a gap when these algorithms are applied to unseen environments.
In this work, we examine how characteristics of the meta-supervised-training distribution impact the performance of these algorithms.
arXiv Detail & Related papers (2023-10-04T12:52:56Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
Optimization [13.131971623143622]
We discover entirely new genetic algorithms in a data-driven fashion.
We parametrize selection and mutation rate adaptation as cross- and self-attention modules.
The learned algorithm can be applied to previously unseen optimization problems, search dimensions & evaluation budgets.
arXiv Detail & Related papers (2023-04-08T12:14:15Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection [4.89253144446913]
We propose a novel multi-stage feature selection framework utilizing multiple levels of approximations, or surrogates.
Our experiments show that SAGA can arrive at near-optimal solutions three times faster than a wrapper GA, on average.
arXiv Detail & Related papers (2021-11-17T12:33:18Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.