論文の概要: A Direct Sampling-Based Deep Learning Approach for Inverse Medium
Scattering Problems
- arxiv url: http://arxiv.org/abs/2305.00250v1
- Date: Sat, 29 Apr 2023 12:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 16:23:29.869226
- Title: A Direct Sampling-Based Deep Learning Approach for Inverse Medium
Scattering Problems
- Title(参考訳): 逆中散乱問題に対する直接サンプリングに基づく深層学習手法
- Authors: Jianfeng Ning, Fuqun Han and Jun Zou
- Abstract要約: 非均一な散乱体を再構成するための新しい直接サンプリングベースディープラーニング手法(DSM-DL)を提案する。
提案するDSM-DLは,計算効率が高く,ノイズに耐性があり,実装が容易で,自然に複数の計測データを組み込むことができる。
- 参考スコア(独自算出の注目度): 3.776050336003086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we focus on the inverse medium scattering problem (IMSP), which
aims to recover unknown scatterers based on measured scattered data. Motivated
by the efficient direct sampling method (DSM) introduced in [23], we propose a
novel direct sampling-based deep learning approach (DSM-DL)for reconstructing
inhomogeneous scatterers. In particular, we use the U-Net neural network to
learn the relation between the index functions and the true contrasts. Our
proposed DSM-DL is computationally efficient, robust to noise, easy to
implement, and able to naturally incorporate multiple measured data to achieve
high-quality reconstructions. Some representative tests are carried out with
varying numbers of incident waves and different noise levels to evaluate the
performance of the proposed method. The results demonstrate the promising
benefits of combining deep learning techniques with the DSM for IMSP.
- Abstract(参考訳): 本研究では,計測された散乱データに基づいて未知の散乱器を回収することを目的とした逆媒質散乱問題(imsp)に着目する。
23]で導入された効率的な直接サンプリング法(dsm)に動機づけられ,不均質な散乱器を再構成する新しい直接サンプリング型深層学習法(dsm-dl)を提案する。
特に、u-netニューラルネットワークを用いて、インデックス関数と真のコントラストの関係を学習する。
提案するdsm-dlは, 計算効率が高く, 雑音に頑健であり, 実装が容易であり, 高品質な再構築を実現するために複数の計測データを自然に組み込むことができる。
提案手法の性能を評価するため, 各種入射波数, 騒音レベルの異なる代表実験を行った。
その結果,深層学習技術とDSM for IMSPの併用による有望なメリットが示された。
関連論文リスト
- Diffusion-PINN Sampler [6.656265182236135]
物理インフォームドニューラルネットワーク(PINN)を用いて,基礎となるSDEの対数密度の制御偏微分方程式を解くことにより,ドリフト項を推定する新しい拡散型サンプリングアルゴリズムを提案する。
DPSの収束保証を確立するために、PINN残差損失によって対数密度近似の誤差を制御できることを証明した。
論文 参考訳(メタデータ) (2024-10-20T09:02:16Z) - Reliable Deep Diffusion Tensor Estimation: Rethinking the Power of Data-Driven Optimization Routine [17.516054970588137]
本研究では,データ駆動型最適化手法であるDoDTIを紹介する。
提案手法はDTIパラメータ推定における最先端性能を実現する。
特に、より優れた一般化、精度、効率を示し、この分野の幅広い応用に高い信頼性を与えている。
論文 参考訳(メタデータ) (2024-09-04T07:35:12Z) - Heterogeneous Learning Rate Scheduling for Neural Architecture Search on Long-Tailed Datasets [0.0]
本稿では,DARTSのアーキテクチャパラメータに適した適応学習率スケジューリング手法を提案する。
提案手法は,学習エポックに基づくアーキテクチャパラメータの学習率を動的に調整し,よく訓練された表現の破壊を防止する。
論文 参考訳(メタデータ) (2024-06-11T07:32:25Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
変分推論において、ベイズモデルの利点は、真の後続分布を正確に捉えることに依存する。
複雑な多重モーダルおよび相関後部を近似するのに適した暗黙分布を特定するニューラルサンプリング手法を提案する。
提案手法では,ニューラルネットワークを局所的に線形化することにより,暗黙分布を用いた近似推論の新たなバウンダリを導入する。
論文 参考訳(メタデータ) (2023-10-10T14:06:56Z) - Score-based Source Separation with Applications to Digital Communication
Signals [72.6570125649502]
拡散モデルを用いた重畳音源の分離手法を提案する。
高周波(RF)システムへの応用によって、我々は、基礎となる離散的な性質を持つ情報源に興味を持っている。
提案手法は,最近提案されたスコア蒸留サンプリング方式のマルチソース拡張と見なすことができる。
論文 参考訳(メタデータ) (2023-06-26T04:12:40Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
大規模マルチインプット・マルチアウトプット(MIMO)システムにおけるダウンリンク(DL)チャネル推定について検討する。
一般的なアプローチは、チャネル硬化によって動機付けられた推定値として平均値を使用することである。
本稿では2つの新しい推定法を提案する。
論文 参考訳(メタデータ) (2021-09-06T13:42:32Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Solving Sparse Linear Inverse Problems in Communication Systems: A Deep
Learning Approach With Adaptive Depth [51.40441097625201]
疎信号回復問題に対するエンドツーエンドの訓練可能なディープラーニングアーキテクチャを提案する。
提案手法は,出力するレイヤ数を学習し,各タスクのネットワーク深さを推論フェーズで動的に調整する。
論文 参考訳(メタデータ) (2020-10-29T06:32:53Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
近年、低ランクなマルチビューサブスペース学習は、クロスビューの分類において大きな可能性を示している。
既存のLMvSLベースの手法では、ビューの区別と差別を同時に扱うことができない。
本稿では,視差を効果的に除去し,識別性を向上する独自の方法であるStructured Low-rank Matrix Recovery (SLMR)を提案する。
論文 参考訳(メタデータ) (2020-03-22T03:57:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。