論文の概要: Point Cloud Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2305.00773v1
- Date: Mon, 1 May 2023 11:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-02 13:34:42.252158
- Title: Point Cloud Semantic Segmentation
- Title(参考訳): point cloudセマンティックセグメンテーション
- Authors: Ivan Martinovi\'c
- Abstract要約: S3DISデータセット上でセマンティックセグメンテーションを行い、各ポイントクラウドは1つの部屋を表す。
私たちはS3DISデータセット、すなわちPointCNN、PointNet++、Cylinder3D、Point Transformer、RepSurfでモデルをトレーニングします。
- 参考スコア(独自算出の注目度): 16.495823748785583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic segmentation is an important and well-known task in the field of
computer vision, in which we attempt to assign a corresponding semantic class
to each input element. When it comes to semantic segmentation of 2D images, the
input elements are pixels. On the other hand, the input can also be a point
cloud, where one input element represents one point in the input point cloud.
By the term point cloud, we refer to a set of points defined by spatial
coordinates with respect to some reference coordinate system. In addition to
the position of points in space, other features can also be defined for each
point, such as RGB components. In this paper, we conduct semantic segmentation
on the S3DIS dataset, where each point cloud represents one room. We train
models on the S3DIS dataset, namely PointCNN, PointNet++, Cylinder3D, Point
Transformer, and RepSurf. We compare the obtained results with respect to
standard evaluation metrics for semantic segmentation and present a comparison
of the models based on inference speed.
- Abstract(参考訳): セマンティクスのセグメンテーションはコンピュータビジョンの分野で重要かつよく知られたタスクであり、それぞれの入力要素に対応するセマンティクスクラスを割り当てようとする。
2d画像の意味セグメンテーションに関しては、入力要素はピクセルである。
一方、入力は1つの入力要素が入力ポイントクラウドの1つの点を表す点雲であることもできる。
点雲という用語によって、ある参照座標系に関して空間座標によって定義される点の集合を指す。
空間内の点の位置に加えて、rgbコンポーネントなど、各点に対して他の特徴を定義することもできる。
本稿では,各点クラウドが1つの部屋を表すs3disデータセット上で意味セグメンテーションを行う。
我々はs3disデータセット、すなわちpointcnn, pointnet++, cylinder3d, point transformer, repsurfでモデルをトレーニングする。
得られた結果とセマンティックセグメンテーションの標準評価指標を比較し,推論速度に基づくモデルの比較を行った。
関連論文リスト
- Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding [11.416392706435415]
ゼロショット3Dポイントクラウド理解は2Dビジョンランゲージモデル(VLM)によって達成できる
既存の戦略は、ヴィジュアル・ランゲージ・モデル(Vision-Language Model)をレンダリングまたはキャプチャされた2Dピクセルから3Dポイントにマッピングし、固有かつ表現可能な雲の幾何学構造を見渡す。
本稿では, 点雲の3次元幾何学的構造を利用して, 移動したビジョン・ランゲージモデルの品質を向上させるための, 初となるトレーニングフリーアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T12:30:07Z) - Deep Semantic Graph Matching for Large-scale Outdoor Point Clouds
Registration [22.308070598885532]
我々は、ポイントクラウド登録問題をセマンティックインスタンスマッチングと登録タスクとして扱う。
大規模屋外クラウド登録のためのディープセマンティックグラフマッチング法(DeepSGM)を提案する。
KITTIオドメトリデータセットで行った実験結果から,提案手法が登録性能を向上させることが示された。
論文 参考訳(メタデータ) (2023-08-10T03:07:28Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
本稿では,ポイントクラウド分析のためのクラスタリングに基づく教師付き学習手法を提案する。
現在のデファクトでシーンワイドなトレーニングパラダイムとは異なり、我々のアルゴリズムは点埋め込み空間上でクラス内のクラスタリングを行う。
我々のアルゴリズムは、有名なポイントクラウドセグメンテーションデータセットの顕著な改善を示している。
論文 参考訳(メタデータ) (2023-07-27T03:42:12Z) - SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation [94.11915008006483]
ポイントクラウドセマンティックセグメンテーションのためのSemAffiNetを提案する。
我々はScanNetV2とNYUv2データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-05-26T17:00:23Z) - GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds [64.86292006892093]
GSIP (Green of Indoor Point clouds) は大規模屋内シーンポイント雲のセマンティックセグメンテーションの効率的なソリューションである。
GSIPには2つの新しいコンポーネントがある: 1) 更なる処理のためにポイントの適切なサブセットを選択するルームスタイルのデータ前処理方法、2) ポイントホップから拡張された新しい特徴抽出器。
実験の結果、GSIPはS3DISデータセットのセグメンテーション性能においてPointNetよりも優れていた。
論文 参考訳(メタデータ) (2021-09-24T09:26:53Z) - LatticeNet: Fast Spatio-Temporal Point Cloud Segmentation Using
Permutohedral Lattices [27.048998326468688]
深層畳み込みニューラルネットワーク(CNN)は、画像のセグメンテーションに際し、優れた性能を示している。
本稿では,3次元セマンティックセグメンテーションの新たなアプローチであるLatticeNetを提案する。
本稿では,本手法が最先端性能を実現する複数のデータセット上での3次元セグメント化の結果について述べる。
論文 参考訳(メタデータ) (2021-08-09T10:17:27Z) - Learning point embedding for 3D data processing [2.12121796606941]
現在の点ベース法は本質的に空間関係処理ネットワークである。
PE-Netは高次元空間における点雲の表現を学習する。
実験によると、PE-Netは複数の挑戦的なデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-07-19T00:25:28Z) - Learning 3D Dense Correspondence via Canonical Point Autoencoder [108.20735652143787]
同一カテゴリの3次元形状間の密接な対応を予測できる標準点オートエンコーダ(CPAE)を提案する。
オートエンコーダは、2つの重要な機能を実行する: (a) 任意に順序付けられた点雲を標準プリミティブに符号化し、 (b) プリミティブを元の入力インスタンス形状に復号する。
論文 参考訳(メタデータ) (2021-07-10T15:54:48Z) - SCSS-Net: Superpoint Constrained Semi-supervised Segmentation Network
for 3D Indoor Scenes [6.3364439467281315]
本稿では,SCSS-Net という名称の3次元点雲に対するスーパーポイント制約付き半教師付きセグメンテーションネットワークを提案する。
具体的には、ラベルのない点群から予測される擬似ラベルを自己学習に利用し、幾何ベースおよび色に基づく領域成長アルゴリズムによって生成されたスーパーポイントを組み合わせて、疑似ラベルを低信頼で修正・削除する。
論文 参考訳(メタデータ) (2021-07-08T04:43:21Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
3次元画像処理のためのGDANet(Geometry-Disentangled Attention Network)を提案する。
GDANetは、点雲を3Dオブジェクトの輪郭と平らな部分に切り離し、それぞれ鋭い変化成分と穏やかな変化成分で表される。
3Dオブジェクトの分類とセグメンテーションベンチマークの実験は、GDANetがより少ないパラメータで最先端の処理を実現していることを示している。
論文 参考訳(メタデータ) (2020-12-20T13:35:00Z) - Deep Positional and Relational Feature Learning for Rotation-Invariant
Point Cloud Analysis [107.9979381402172]
点雲解析のための回転不変深層ネットワークを提案する。
ネットワークは階層的であり、位置的特徴埋め込みブロックと関係的特徴埋め込みブロックという2つのモジュールに依存している。
実験では、ベンチマークデータセット上で最先端の分類とセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2020-11-18T04:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。