A comparison of short-term probabilistic forecasts for the incidence of
COVID-19 using mechanistic and statistical time series models
- URL: http://arxiv.org/abs/2305.00933v1
- Date: Mon, 1 May 2023 16:37:43 GMT
- Title: A comparison of short-term probabilistic forecasts for the incidence of
COVID-19 using mechanistic and statistical time series models
- Authors: Nicolas Banholzer, Thomas Mellan, H Juliette T Unwin, Stefan
Feuerriegel, Swapnil Mishra, Samir Bhatt
- Abstract summary: Short-term forecasts of infectious disease spread are a critical component in risk evaluation and public health decision making.
We compare short-term probabilistic forecasts of popular mechanistic models with forecasts of statistical time series models.
We find that, on average, probabilistic forecasts from statistical time series models are overall at least as accurate as forecasts from mechanistic models.
- Score: 15.031837435365532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Short-term forecasts of infectious disease spread are a critical component in
risk evaluation and public health decision making. While different models for
short-term forecasting have been developed, open questions about their relative
performance remain. Here, we compare short-term probabilistic forecasts of
popular mechanistic models based on the renewal equation with forecasts of
statistical time series models. Our empirical comparison is based on data of
the daily incidence of COVID-19 across six large US states over the first
pandemic year. We find that, on average, probabilistic forecasts from
statistical time series models are overall at least as accurate as forecasts
from mechanistic models. Moreover, statistical time series models better
capture volatility. Our findings suggest that domain knowledge, which is
integrated into mechanistic models by making assumptions about disease
dynamics, does not improve short-term forecasts of disease incidence. We note,
however, that forecasting is often only one of many objectives and thus
mechanistic models remain important, for example, to model the impact of
vaccines or the emergence of new variants.
Related papers
- Uncertainty quantification for data-driven weather models [0.0]
We study and compare uncertainty quantification methods to generate probabilistic weather forecasts from a state-of-the-art deterministic data-driven weather model, Pangu-Weather.
Specifically, we compare approaches for quantifying forecast uncertainty based on generating ensemble forecasts via perturbations to the initial conditions.
In a case study on medium-range forecasts of selected weather variables over Europe, the probabilistic forecasts obtained by using the Pangu-Weather model in concert with uncertainty quantification methods show promising results.
arXiv Detail & Related papers (2024-03-20T10:07:51Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - LoMEF: A Framework to Produce Local Explanations for Global Model Time
Series Forecasts [2.3096751699592137]
Global Forecasting Models (GFM) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications.
However, GFMs typically lack interpretability, especially towards particular time series.
We propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs.
arXiv Detail & Related papers (2021-11-13T00:17:52Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Comparative Analysis of Machine Learning Approaches to Analyze and
Predict the Covid-19 Outbreak [10.307715136465056]
We present a comparative analysis of various machine learning (ML) approaches in predicting the COVID-19 outbreak in the epidemiological domain.
The results reveal the advantages of ML algorithms for supporting decision making of evolving short term policies.
arXiv Detail & Related papers (2021-02-11T11:57:33Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Forecasting COVID-19 daily cases using phone call data [0.0]
We propose a simple Multiple Linear Regression model optimised to use call data to forecast the number of daily confirmed cases.
Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures.
arXiv Detail & Related papers (2020-10-05T18:07:07Z) - Backtesting the predictability of COVID-19 [0.0]
We use historical data of COVID-19 infections from 253 regions from the period of 22nd January 2020 until 22nd June 2020.
Prediction errors are substantially higher in early stages of the pandemic, resulting from limited data.
The more confirmed cases a country exhibits at any point in time, the lower the error in forecasting future confirmed cases.
arXiv Detail & Related papers (2020-07-22T13:18:00Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.