Spatial deformation of many-body quantum chaotic systems and quantum
information scrambling
- URL: http://arxiv.org/abs/2305.01019v1
- Date: Mon, 1 May 2023 18:20:44 GMT
- Title: Spatial deformation of many-body quantum chaotic systems and quantum
information scrambling
- Authors: Kanato Goto, Taozhi Guo, Tomoki Nosaka, Masahiro Nozaki, Shinsei Ryu
and Kotaro Tamaoka
- Abstract summary: We study the effect of spatial inhomogeneity on quantum information scrambling, a process of spreading and hiding quantum information in quantum many-body systems.
We find that the time dependence of energy density exhibits the signature of black-hole-like excitation found in the $1+1$ d CFTs even in the chaotic spin chain.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the effect of spatial inhomogeneity on quantum information
scrambling, a process of spreading and locally hiding quantum information in
quantum many-body systems. As a paradigmatic example, we consider the quantum
chaotic Ising spin chain and its inhomogeneous counterpart that is obtained by
modulating the Hamiltonian density. Specifically, we consider the so-called
M\"obius and sine-square deformations that were previously studied in the
context of (1+1)-dimensional conformal field theories ($1+1$ d CFTs). In the
spatial region where the modulated energy density is small, these deformations
prevent the spreading of quantum information while in the region where the
modulated energy density is large quantum information scrambling is
accelerated. This suggests that we can control the scrambling and butterfly
effect by spatially modulating the Hamiltonian density. We also found that the
time dependence of energy density exhibits the signature of black-hole-like
excitation found in the $1+1$ d CFTs even in the chaotic spin chain.
Related papers
- Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Non-Hermitian Hamiltonian Deformations in Quantum Mechanics [4.071207179756646]
We introduce a broader class of non-Hermitian Hamiltonian deformations in a nonrelativistic setting.
We relate the time evolution operator and the time-evolving density matrix in the undeformed and deformed theories.
As the dissipative evolution of a quantum system can be conveniently described in Liouville space, we discuss the spectral properties of the Liouvillians.
arXiv Detail & Related papers (2022-11-10T09:25:59Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Exact-WKB analysis for SUSY and quantum deformed potentials: Quantum
mechanics with Grassmann fields and Wess-Zumino terms [0.0]
Quantum deformed potentials arise naturally in quantum mechanical systems of one bosonic coordinate coupled to $N_f$ Grassmann valued fermionic coordinates.
Using exact WKB, we derive exact quantization condition and its median resummation.
For quantum deformed triple-well potential, we demonstrate the P-NP relation, by computing period integrals and Mellin transform.
arXiv Detail & Related papers (2021-11-10T20:35:38Z) - Intrinsic Entropy of Squeezed Quantum Fields and Nonequilibrium Quantum
Dynamics of Cosmological Perturbations [0.0]
entropy of cosmological perturbations can be studied by treating them in the framework of squeezed quantum systems.
We compute the covariance matrix elements of the parametric quantum field and solve for the evolution of the density matrix elements.
We show explicitly why the entropy for the squeezed yet closed system is zero, but is proportional to the particle number produced.
arXiv Detail & Related papers (2021-10-06T13:43:00Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - On quantum Hall effect, Kosterlitz-Thouless phase transition, Dirac
magnetic monopole, and Bohr-Sommerfeld quantization [0.0]
We address quantization phenomena in transport and vortex/precession-motion of low-dimensional systems.
We discuss how the self-consistent Bohr-Sommerfeld quantization condition permeates the relationships between the quantization of integer Hall effect.
arXiv Detail & Related papers (2020-09-16T17:57:14Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.