論文の概要: Physical Adversarial Attacks for Surveillance: A Survey
- arxiv url: http://arxiv.org/abs/2305.01074v1
- Date: Mon, 1 May 2023 20:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 16:09:55.998893
- Title: Physical Adversarial Attacks for Surveillance: A Survey
- Title(参考訳): サーベイランスに対する身体的敵対攻撃:調査
- Authors: Kien Nguyen, Tharindu Fernando, Clinton Fookes, Sridha Sridharan
- Abstract要約: 本稿では,監視アプリケーションに対する身体的敵攻撃の学習と設計における最近の試みと成果を概観する。
特に,身体的敵攻撃を解析するための枠組みを提案し,4つの主要な監視課題に対する身体的敵攻撃を包括的に調査する。
本稿では,物理的な攻撃に対する監視システム内でのレジリエンスを構築するための重要なステップについて述べる。
- 参考スコア(独自算出の注目度): 35.11082478239406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern automated surveillance techniques are heavily reliant on deep learning
methods. Despite the superior performance, these learning systems are
inherently vulnerable to adversarial attacks - maliciously crafted inputs that
are designed to mislead, or trick, models into making incorrect predictions. An
adversary can physically change their appearance by wearing adversarial
t-shirts, glasses, or hats or by specific behavior, to potentially avoid
various forms of detection, tracking and recognition of surveillance systems;
and obtain unauthorized access to secure properties and assets. This poses a
severe threat to the security and safety of modern surveillance systems. This
paper reviews recent attempts and findings in learning and designing physical
adversarial attacks for surveillance applications. In particular, we propose a
framework to analyze physical adversarial attacks and provide a comprehensive
survey of physical adversarial attacks on four key surveillance tasks:
detection, identification, tracking, and action recognition under this
framework. Furthermore, we review and analyze strategies to defend against the
physical adversarial attacks and the methods for evaluating the strengths of
the defense. The insights in this paper present an important step in building
resilience within surveillance systems to physical adversarial attacks.
- Abstract(参考訳): 現代の自動監視技術は、ディープラーニング手法に大きく依存している。
優れたパフォーマンスにもかかわらず、これらの学習システムは本質的に敵対的な攻撃に弱い。
敵は、敵のTシャツ、眼鏡、帽子、あるいは特定の行動により、身体的に外見を変えることができ、監視システムの様々な形態の検出、追跡、認識を回避し、安全資産や資産への不正アクセスを得ることができる。
これは現代の監視システムのセキュリティと安全性に深刻な脅威をもたらす。
本稿では,監視アプリケーションに対する物理敵攻撃の学習と設計における最近の試みと成果についてレビューする。
特に,身体的敵意攻撃を解析するためのフレームワークを提案し,このフレームワークに基づく4つの重要な監視課題である検出,識別,追跡,行動認識に対する物理的な敵意攻撃の包括的な調査を行う。
さらに, 物理的攻撃に対する防御戦略と防御の強さを評価する方法について検討し, 分析を行った。
本稿では,物理的な攻撃に対する監視システム内でのレジリエンスを構築するための重要なステップを示す。
関連論文リスト
- A Survey and Evaluation of Adversarial Attacks for Object Detection [11.48212060875543]
ディープラーニングモデルは、様々なコンピュータビジョンタスクにおいて優れているが、誤った予測につながる入力データの逆例-サブトル摂動の影響を受けやすい。
この脆弱性は、自動運転車、セキュリティ監視、航空機の健康監視など、安全に重要なアプリケーションに重大なリスクをもたらす。
論文 参考訳(メタデータ) (2024-08-04T05:22:08Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
バックドア攻撃が、特有のメカニズムによってどのように動作するかを示す。
本研究は, 対照的なバックドア攻撃の特異性に合わせて, 防御の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2023-12-14T15:54:52Z) - Physical Adversarial Attacks For Camera-based Smart Systems: Current
Trends, Categorization, Applications, Research Challenges, and Future Outlook [2.1771693754641013]
本研究の目的は,身体的敵意攻撃の概念を深く理解し,その特徴を分析し,特徴を識別することである。
本稿では, 対象タスクに応じて異なるアプリケーションで分類した, 様々な物理的敵攻撃手法について検討する。
本研究は,これらの攻撃手法の有効性,ステルス性,ロバスト性の観点から評価する。
論文 参考訳(メタデータ) (2023-08-11T15:02:19Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Physical Adversarial Attack meets Computer Vision: A Decade Survey [55.38113802311365]
本稿では,身体的敵意攻撃の概要を概観する。
本研究は,身体的敵意攻撃の性能を体系的に評価する第一歩を踏み出した。
提案する評価基準であるhiPAAは6つの視点から構成される。
論文 参考訳(メタデータ) (2022-09-30T01:59:53Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
論文 参考訳(メタデータ) (2022-04-04T15:06:03Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
本稿では,機械学習による侵入検知システムに対する敵ネットワークトラフィックの転送可能性について検討する。
本研究では,機械学習による侵入検知システムに対する対向的ネットワークトラフィックの転送可能性特性の影響を抑えるための防御機構として検出・削除を検討した。
論文 参考訳(メタデータ) (2021-12-22T17:54:54Z) - Adversarial Training for Deep Learning-based Intrusion Detection Systems [0.0]
本稿では,敵対攻撃が深層学習に基づく侵入検出に及ぼす影響について検討する。
十分な歪みを伴って、敵の例は検出器を誤解させ、敵の訓練を用いることで侵入検知の堅牢性を向上させることができる。
論文 参考訳(メタデータ) (2021-04-20T09:36:24Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。