How Simulation Helps Autonomous Driving:A Survey of Sim2real, Digital
Twins, and Parallel Intelligence
- URL: http://arxiv.org/abs/2305.01263v2
- Date: Fri, 30 Jun 2023 02:33:19 GMT
- Title: How Simulation Helps Autonomous Driving:A Survey of Sim2real, Digital
Twins, and Parallel Intelligence
- Authors: Xuemin Hu, Shen Li, Tingyu Huang, Bo Tang, Rouxing Huai, Long Chen
- Abstract summary: How to adapt driving knowledge learned in simulation to reality becomes a critical issue.
Virtual simulation world differs from the real world in many aspects such as lighting, textures, vehicle dynamics, and agents' behaviors.
Three categories of approaches to address the reality gap issue: transferring knowledge from simulation to reality (sim2real), learning in digital twins (DTs), and learning by parallel intelligence (PI)
- Score: 16.24370001383615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Safety and cost are two important concerns for the development of autonomous
driving technologies. From the academic research to commercial applications of
autonomous driving vehicles, sufficient simulation and real world testing are
required. In general, a large scale of testing in simulation environment is
conducted and then the learned driving knowledge is transferred to the real
world, so how to adapt driving knowledge learned in simulation to reality
becomes a critical issue. However, the virtual simulation world differs from
the real world in many aspects such as lighting, textures, vehicle dynamics,
and agents' behaviors, etc., which makes it difficult to bridge the gap between
the virtual and real worlds. This gap is commonly referred to as the reality
gap (RG). In recent years, researchers have explored various approaches to
address the reality gap issue, which can be broadly classified into three
categories: transferring knowledge from simulation to reality (sim2real),
learning in digital twins (DTs), and learning by parallel intelligence (PI)
technologies. In this paper, we consider the solutions through the sim2real,
DTs, and PI technologies, and review important applications and innovations in
the field of autonomous driving. Meanwhile, we show the state-of-the-arts from
the views of algorithms, models, and simulators, and elaborate the development
process from sim2real to DTs and PI. The presentation also illustrates the
far-reaching effects and challenges in the development of sim2real, DTs, and PI
in autonomous driving.
Related papers
- A Platform-Agnostic Deep Reinforcement Learning Framework for Effective Sim2Real Transfer towards Autonomous Driving [0.0]
Deep Reinforcement Learning (DRL) has shown remarkable success in solving complex tasks.
transferring DRL agents to the real world is still challenging due to the significant discrepancies between simulation and reality.
We propose a robust DRL framework that leverages platform-dependent perception modules to extract task-relevant information.
arXiv Detail & Related papers (2023-04-14T07:55:07Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Discrete Control in Real-World Driving Environments using Deep
Reinforcement Learning [2.467408627377504]
We introduce a framework (perception, planning, and control) in a real-world driving environment that transfers the real-world environments into gaming environments.
We propose variations of existing Reinforcement Learning (RL) algorithms in a multi-agent setting to learn and execute the discrete control in real-world environments.
arXiv Detail & Related papers (2022-11-29T04:24:03Z) - Sim-to-Real via Sim-to-Seg: End-to-end Off-road Autonomous Driving
Without Real Data [56.49494318285391]
We present Sim2Seg, a re-imagining of RCAN that crosses the visual reality gap for off-road autonomous driving.
This is done by learning to translate randomized simulation images into simulated segmentation and depth maps.
This allows us to train an end-to-end RL policy in simulation, and directly deploy in the real-world.
arXiv Detail & Related papers (2022-10-25T17:50:36Z) - DeXtreme: Transfer of Agile In-hand Manipulation from Simulation to
Reality [64.51295032956118]
We train a policy that can perform robust dexterous manipulation on an anthropomorphic robot hand.
Our work reaffirms the possibilities of sim-to-real transfer for dexterous manipulation in diverse kinds of hardware and simulator setups.
arXiv Detail & Related papers (2022-10-25T01:51:36Z) - Data generation using simulation technology to improve perception
mechanism of autonomous vehicles [0.0]
We will demonstrate the effectiveness of combining data gathered from the real world with data generated in the simulated world to train perception systems.
We will also propose a multi-level deep learning perception framework that aims to emulate a human learning experience.
arXiv Detail & Related papers (2022-07-01T03:42:33Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - RoboTHOR: An Open Simulation-to-Real Embodied AI Platform [56.50243383294621]
We introduce RoboTHOR to democratize research in interactive and embodied visual AI.
We show there exists a significant gap between the performance of models trained in simulation when they are tested in both simulations and their carefully constructed physical analogs.
arXiv Detail & Related papers (2020-04-14T20:52:49Z) - A machine learning environment for evaluating autonomous driving
software [1.6516902135723865]
We present a machine learning environment for detecting autonomous vehicle corner case behavior.
Our environment is based on connecting the CARLA simulation software to machine learning framework and custom AI client software.
Our system can search for corner cases where the vehicle AI is unable to correctly understand the situation.
arXiv Detail & Related papers (2020-03-07T13:05:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.