論文の概要: Self-supervised arbitrary scale super-resolution framework for
anisotropic MRI
- arxiv url: http://arxiv.org/abs/2305.01360v1
- Date: Tue, 2 May 2023 12:27:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 14:36:28.018185
- Title: Self-supervised arbitrary scale super-resolution framework for
anisotropic MRI
- Title(参考訳): 異方性MRIのための自己監督型任意スケール超解像フレームワーク
- Authors: Haonan Zhang, Yuhan Zhang, Qing Wu, Jiangjie Wu, Zhiming Zhen, Feng
Shi, Jianmin Yuan, Hongjiang Wei, Chen Liu and Yuyao Zhang
- Abstract要約: 異方性MRI入力から等方性磁気共鳴(MR)画像を再構成するための,効率的な自己教師付き任意スケール超解像(SR)フレームワークを提案する。
提案フレームワークは、任意の画像解像度で、Wildの異方性MRボリュームを用いたトレーニングデータセットを構築する。
我々は、シミュレーションされた成人脳のデータセットと実際の収集された7T脳のデータセットについて実験を行った。
- 参考スコア(独自算出の注目度): 14.05196542298934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an efficient self-supervised arbitrary-scale
super-resolution (SR) framework to reconstruct isotropic magnetic resonance
(MR) images from anisotropic MRI inputs without involving external training
data. The proposed framework builds a training dataset using in-the-wild
anisotropic MR volumes with arbitrary image resolution. We then formulate the
3D volume SR task as a SR problem for 2D image slices. The anisotropic volume's
high-resolution (HR) plane is used to build the HR-LR image pairs for model
training. We further adapt the implicit neural representation (INR) network to
implement the 2D arbitrary-scale image SR model. Finally, we leverage the
well-trained proposed model to up-sample the 2D LR plane extracted from the
anisotropic MR volumes to their HR views. The isotropic MR volumes thus can be
reconstructed by stacking and averaging the generated HR slices. Our proposed
framework has two major advantages: (1) It only involves the
arbitrary-resolution anisotropic MR volumes, which greatly improves the model
practicality in real MR imaging scenarios (e.g., clinical brain image
acquisition); (2) The INR-based SR model enables arbitrary-scale image SR from
the arbitrary-resolution input image, which significantly improves model
training efficiency. We perform experiments on a simulated public adult brain
dataset and a real collected 7T brain dataset. The results indicate that our
current framework greatly outperforms two well-known self-supervised models for
anisotropic MR image SR tasks.
- Abstract(参考訳): 本稿では,異方性MRI入力からの等方性磁気共鳴(MR)像を外部トレーニングデータに関係なく再構成する,効率的な自己教師型任意スケール超解像(SR)フレームワークを提案する。
提案フレームワークは、任意の画像解像度で、Wildの異方性MRボリュームを用いたトレーニングデータセットを構築する。
次に,2次元画像スライスにおけるSR問題として3次元ボリュームSRタスクを定式化する。
異方性体積の高分解能(HR)平面は、モデルトレーニングのためのHR-LRイメージペアを構築するために使用される。
さらに、2次元任意スケール画像SRモデルを実装するために、暗黙的ニューラルネットワーク(INR)ネットワークを適用する。
最後に、よく訓練されたモデルを用いて、異方性MRボリュームから抽出した2次元LR平面をHRビューにアップサンプリングする。
これにより、生成したHRスライスを積み重ねて平均化することにより、等方的MRボリュームを再構成することができる。
提案手法は,(1)任意の解像度の異方性mrボリュームのみを含み,実際のmr画像シナリオ(例えば,臨床脳画像取得)におけるモデル実用性が大幅に向上する。2) inrベースのsrモデルでは,任意の解像度の入力画像から任意のスケールのsrを許容し,モデルのトレーニング効率が大幅に向上する。
シミュレーションされた成人脳データセットと実際の7t脳データセットを用いて実験を行った。
その結果,本研究のフレームワークは,異方性MR画像SRタスクにおいて,よく知られた2つの自己教師モデルよりも優れていた。
関連論文リスト
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
The Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method was proposed。
スケジューラモジュールを用いて、再構成したMR画像の品質と忠実度を適切に制御し、バランスをとる。
MRIタスク(MR-VAE)に適応したVAEを探索し、将来のMR関連タスクのバックボーンとして機能する。
論文 参考訳(メタデータ) (2024-11-05T09:51:59Z) - Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
臨床実践では、2次元磁気共鳴(MR)シーケンスが広く採用されている。個々の2次元スライスを積み重ねて3次元ボリュームを形成できるが、比較的大きなスライスススペーシングは可視化とその後の解析タスクに課題をもたらす可能性がある。
スライス間隔を低減するため,ディープラーニングに基づく超解像技術が広く研究されている。
現在のほとんどのソリューションは、教師付きトレーニングのために、かなりの数の高解像度と低解像度の画像を必要とするが、通常は現実のシナリオでは利用できない。
論文 参考訳(メタデータ) (2024-06-10T02:20:26Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
本稿では,Neural Radiance Field(NeRF)の概念を利用したMRI技術について述べる。
ラジアルアンダーサンプリングにより、対応する撮像問題をスパースビューレンダリングデータから画像モデリングタスクに再構成することができる。
空間座標から画像強度を出力する多層パーセプトロンは、所定の測定データと所望の画像との間のMR物理駆動レンダリング関係を学習する。
論文 参考訳(メタデータ) (2024-02-20T18:37:42Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
マルチコントラスト超解像 (SR) 再構成により, SR画像の高画質化が期待できる。
放射線技師は、固定スケールではなく任意のスケールでMR画像を拡大することに慣れている。
本稿では,Dual-ArbNetと呼ばれる,暗黙的ニューラル表現に基づくマルチコントラストMRI超解像法を提案する。
論文 参考訳(メタデータ) (2023-07-05T14:43:26Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic
Resonance Image using Implicit Neural Representation [37.43985628701494]
高分解能(HR)医療画像は、早期かつ正確な診断を容易にするために、豊富な解剖学的構造の詳細を提供する。
近年の研究では、深部畳み込みニューラルネットワークを用いて、低分解能(LR)入力から等方性HR MR像を復元できることが示されている。
Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images。
論文 参考訳(メタデータ) (2021-10-27T14:48:54Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
太いスライス磁気共鳴(MR)画像は、しばしば冠状および矢状視で構造的にぼやけている。
深層学習は、これらの低分解能(LR)症例から高分解能(HR)薄膜MR画像を再構築する大きな可能性を示している。
MRスライス再構成のための2段階自己監督型サイクル一貫性ネットワーク(TSCNet)を提案する。
論文 参考訳(メタデータ) (2021-06-29T13:29:18Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - DDet: Dual-path Dynamic Enhancement Network for Real-World Image
Super-Resolution [69.2432352477966]
実画像超解像(Real-SR)は、実世界の高分解能画像(HR)と低分解能画像(LR)の関係に焦点を当てている。
本稿では,Real-SRのためのデュアルパス動的拡張ネットワーク(DDet)を提案する。
特徴表現のための大規模な畳み込みブロックを積み重ねる従来の手法とは異なり、非一貫性のある画像対を研究するためのコンテンツ認識フレームワークを導入する。
論文 参考訳(メタデータ) (2020-02-25T18:24:51Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
既存の顔画像超解像法(SR)は、主に人工的にダウンサンプリングされた低解像度(LR)画像の改善に焦点を当てている。
従来の非教師なしドメイン適応(UDA)手法は、未ペアの真のLRとHRデータを用いてモデルをトレーニングすることでこの問題に対処する。
これにより、視覚的特徴を構成することと、画像の解像度を高めることの2つのタスクで、モデルをオーバーストレッチする。
従来のSRモデルとUDAモデルの利点を結合する手法を定式化する。
論文 参考訳(メタデータ) (2019-12-30T16:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。