Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control
- URL: http://arxiv.org/abs/2305.01661v2
- Date: Fri, 18 Oct 2024 07:15:51 GMT
- Title: Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control
- Authors: Dongyue Guo, Zheng Zhang, Bo Yang, Jianwei Zhang, Hongyu Yang, Yi Lin,
- Abstract summary: Current air traffic control systems fail to consider spoken instructions for traffic prediction.
We present an automation paradigm integrating controlling intent into the information processing loop.
A 3-stage progressive multi-modal learning paradigm is proposed to address the modality gap between the trajectory and spoken instructions.
- Score: 20.718663626382995
- License:
- Abstract: The booming air transportation industry inevitably burdens air traffic controllers' workload, causing unexpected human factor-related incidents. Current air traffic control systems fail to consider spoken instructions for traffic prediction, bringing significant challenges in detecting human errors during real-time traffic operations. Here, we present an automation paradigm integrating controlling intent into the information processing loop through the spoken instruction-aware flight trajectory prediction framework. A 3-stage progressive multi-modal learning paradigm is proposed to address the modality gap between the trajectory and spoken instructions, as well as minimize the data requirements. Experiments on a real-world dataset show the proposed framework achieves flight trajectory prediction with high predictability and timeliness, obtaining over 20% relative reduction in mean deviation error. Moreover, the generalizability of the proposed framework is also confirmed by various model architectures. The proposed framework can formulate full-automated information processing in real-world air traffic applications, supporting human error detection and enhancing aviation safety.
Related papers
- FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
This study introduces a scaled noise conditional diffusion model for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving the accuracy and plausibility of predicted trajectories.
Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
arXiv Detail & Related papers (2024-11-23T23:13:45Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Air Traffic Controller Workload Level Prediction using Conformalized
Dynamical Graph Learning [3.622365857213782]
We propose a graph-based deep-learning framework with conformal prediction to identify the ATCo workload levels.
The experiment results suggest that (a) besides the traffic density feature, the traffic conflict feature contributes to the workload prediction capabilities.
arXiv Detail & Related papers (2023-07-20T03:54:47Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
The unprecedented increase of commercial airlines and private jets over the past ten years presents a challenge for air traffic control.
Precise flight trajectory prediction is of great significance in air transportation management, which contributes to the decision-making for safe and orderly flights.
We propose a phased flight trajectory prediction framework that can outperform state-of-the-art methods for flight trajectory prediction for large passenger/transport airplanes.
arXiv Detail & Related papers (2022-03-17T02:16:02Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - A Simplified Framework for Air Route Clustering Based on ADS-B Data [0.0]
This paper presents a framework that can support to detect the typical air routes between airports based on ADS-B data.
As a matter of fact, our framework can be taken into account to reduce practically the computational cost for air flow optimization.
arXiv Detail & Related papers (2021-07-07T08:55:31Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
Air turbulence forecasting can help airlines avoid hazardous turbulence, guide routes that keep passengers safe, maximize efficiency, reduce costs.
Traditional forecasting approaches rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions.
We propose a machine learning based turbulence forecasting system due to two challenges: (1) Complex-temporal correlations, and (2) scarcity, very limited turbulence labels can be obtained.
arXiv Detail & Related papers (2020-10-26T21:14:15Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - A Deep Ensemble Multi-Agent Reinforcement Learning Approach for Air
Traffic Control [5.550794444001022]
We propose a new intelligent decision making framework that leverages multi-agent reinforcement learning (MARL) to suggest adjustments of aircraft speeds in real-time.
The goal of the system is to enhance the ability of an air traffic controller to provide effective guidance to aircraft to avoid air traffic congestion, near-miss situations, and to improve arrival timeliness.
arXiv Detail & Related papers (2020-04-03T06:03:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.