Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control
- URL: http://arxiv.org/abs/2305.01661v2
- Date: Fri, 18 Oct 2024 07:15:51 GMT
- Title: Integrating spoken instructions into flight trajectory prediction to optimize automation in air traffic control
- Authors: Dongyue Guo, Zheng Zhang, Bo Yang, Jianwei Zhang, Hongyu Yang, Yi Lin,
- Abstract summary: Current air traffic control systems fail to consider spoken instructions for traffic prediction.
We present an automation paradigm integrating controlling intent into the information processing loop.
A 3-stage progressive multi-modal learning paradigm is proposed to address the modality gap between the trajectory and spoken instructions.
- Score: 20.718663626382995
- License:
- Abstract: The booming air transportation industry inevitably burdens air traffic controllers' workload, causing unexpected human factor-related incidents. Current air traffic control systems fail to consider spoken instructions for traffic prediction, bringing significant challenges in detecting human errors during real-time traffic operations. Here, we present an automation paradigm integrating controlling intent into the information processing loop through the spoken instruction-aware flight trajectory prediction framework. A 3-stage progressive multi-modal learning paradigm is proposed to address the modality gap between the trajectory and spoken instructions, as well as minimize the data requirements. Experiments on a real-world dataset show the proposed framework achieves flight trajectory prediction with high predictability and timeliness, obtaining over 20% relative reduction in mean deviation error. Moreover, the generalizability of the proposed framework is also confirmed by various model architectures. The proposed framework can formulate full-automated information processing in real-world air traffic applications, supporting human error detection and enhancing aviation safety.
Related papers
- Graph machine learning for flight delay prediction due to holding manouver [0.0]
This study models the prediction of flight delays due to holding maneuvers as a graph problem.
We leverage advanced Graph Machine Learning (Graph ML) techniques to capture complex interdependencies in air traffic networks.
We discuss the model's potential operational impact through a web-based tool that allows users to simulate real-time delay predictions.
arXiv Detail & Related papers (2025-02-06T17:18:53Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - CSP-AIT-Net: A contrastive learning-enhanced spatiotemporal graph attention framework for short-term metro OD flow prediction with asynchronous inflow tracking [0.7437000580479967]
Current models often fail to capture the asynchronous departure characteristics of origin-destination (OD) passenger flow data.
We propose a novel framework designed to enhance OD flow prediction by incorporating asynchronous inflow tracking and advanced semantics.
This work contributes to enhancing metro operational efficiency, scheduling precision, and overall system safety.
arXiv Detail & Related papers (2024-12-02T12:00:06Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.
Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.
This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - FollowGen: A Scaled Noise Conditional Diffusion Model for Car-Following Trajectory Prediction [9.2729178775419]
This study introduces a scaled noise conditional diffusion model for car-following trajectory prediction.
It integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving the accuracy and plausibility of predicted trajectories.
Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.
arXiv Detail & Related papers (2024-11-23T23:13:45Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
We present control-aware prediction objectives (CAPOs) to evaluate the downstream effect of predictions on control without requiring the planner be differentiable.
We propose two types of importance weights that weight the predictive likelihood: one using an attention model between agents, and another based on control variation when exchanging predicted trajectories for ground truth trajectories.
arXiv Detail & Related papers (2022-04-28T07:37:21Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
The unprecedented increase of commercial airlines and private jets over the past ten years presents a challenge for air traffic control.
Precise flight trajectory prediction is of great significance in air transportation management, which contributes to the decision-making for safe and orderly flights.
We propose a phased flight trajectory prediction framework that can outperform state-of-the-art methods for flight trajectory prediction for large passenger/transport airplanes.
arXiv Detail & Related papers (2022-03-17T02:16:02Z) - A Simplified Framework for Air Route Clustering Based on ADS-B Data [0.0]
This paper presents a framework that can support to detect the typical air routes between airports based on ADS-B data.
As a matter of fact, our framework can be taken into account to reduce practically the computational cost for air flow optimization.
arXiv Detail & Related papers (2021-07-07T08:55:31Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
Air turbulence forecasting can help airlines avoid hazardous turbulence, guide routes that keep passengers safe, maximize efficiency, reduce costs.
Traditional forecasting approaches rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions.
We propose a machine learning based turbulence forecasting system due to two challenges: (1) Complex-temporal correlations, and (2) scarcity, very limited turbulence labels can be obtained.
arXiv Detail & Related papers (2020-10-26T21:14:15Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.