Photon emission statistics of a driven microwave cavity
- URL: http://arxiv.org/abs/2305.01986v2
- Date: Tue, 8 Aug 2023 15:18:46 GMT
- Title: Photon emission statistics of a driven microwave cavity
- Authors: Pedro Portugal, Fredrik Brange, Kalle S. U. Kansanen, Peter
Samuelsson, and Christian Flindt
- Abstract summary: We investigate theoretically the statistics of photons emitted from a microwave cavity driven resonantly by an external field.
We employ a Lindblad master equation dressed with counting fields to obtain the generating function of the photon emission statistics.
In the long-time limit, we analyze the factorial cumulants of the photon emission statistics and the large-deviation statistics of the emission currents.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent experimental advances have made it possible to detect individual
quantum jumps in open quantum systems, such as the tunneling of single
electrons in nanoscale conductors or the emission of photons from non-classical
light sources. Here, we investigate theoretically the statistics of photons
emitted from a microwave cavity that is driven resonantly by an external field.
We focus on the differences between a parametric and a coherent drive, which
either squeezes or displaces the cavity field. We employ a Lindblad master
equation dressed with counting fields to obtain the generating function of the
photon emission statistics using a theoretical framework based on Gaussian
states. We then compare the distribution of photon waiting times for the two
drives as well as the $g^{(2)}$-functions of the outgoing light, and we
identify important differences between these observables. In the long-time
limit, we analyze the factorial cumulants of the photon emission statistics and
the large-deviation statistics of the emission currents, which are markedly
different for the two drives. Our theoretical framework can readily be extended
to more complicated systems, for instance, with several coupled microwave
cavities, and our predictions may be tested in future experiments.
Related papers
- Generating entangled pairs of vortex photons via induced emission [0.0]
Pairs of entangled vortex photons can promise new prospects of application in quantum computing and cryptography.
We investigate the possibility of generating such states via two-level atom emission stimulated by a single photon wave packet.
We conclude that induced emission can be used as a source of entangled vortex photons with applications in atomic physics experiments, quantum optics, and quantum information sciences.
arXiv Detail & Related papers (2024-11-21T14:10:50Z) - Wavevector-resolved polarization entanglement from radiative cascades [27.84599956781646]
We show that there exists an interplay between photon polarization and emission wavevector, strongly affecting quantum correlations when emitters are embedded in micro-cavities.
Our results, backed by theoretical modelling, yield a brand-new understanding of cascaded emission for various quantum emitters.
arXiv Detail & Related papers (2024-09-12T09:32:29Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Measurement of microwave photon correlations at millikelvin with a thermal detector [1.4059056945010209]
Microwave photons are important carriers of quantum information in many promising platforms for quantum computing.
We present a measurement technique with a nanobolometer that directly measures the photon statistics at millikelvin.
This technique is poised to serve in fundamental tests of quantum mechanics with microwave photons and function as a scalable readout solution for a quantum information processor.
arXiv Detail & Related papers (2024-07-06T18:15:08Z) - Waiting time statistics for a double quantum dot coupled with an optical cavity [0.0]
A double quantum dot coupled to an optical cavity is a prototypical example of a non-trivial open quantum system.
Recent experimental and theoretical studies show that this system is a candidate for single-photon detection in the microwave domain.
We provide a detailed analysis of the waiting time statistics of this system within the quantum jump unravelling.
arXiv Detail & Related papers (2024-04-21T21:08:36Z) - Multi-photon electron emission with non-classical light [52.77024349608834]
We present measurements of electron number-distributions from metal needle tips illuminated with ultrashort light pulses of different photon quantum statistics.
Changing the number of modes of the exciting bright squeezed vacuum light, we can tailor the electron-number distribution on demand.
arXiv Detail & Related papers (2023-07-26T12:35:03Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Full counting statistics of the photocurrent through a double quantum
dot embedded in a driven microwave resonator [0.0]
Detection of single, itinerant microwave photons is an important functionality for emerging quantum technology applications.
It was demonstrated that a double quantum dot (DQD) coupled to a microwave resonator can act as an efficient and continuous photodetector.
Here we theoretically investigate, in the same system, the fluctuations of the photocurrent through the DQD for a coherent microwave drive of the resonator.
arXiv Detail & Related papers (2022-07-14T14:17:30Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.