Waiting time statistics for a double quantum dot coupled with an optical cavity
- URL: http://arxiv.org/abs/2404.13775v3
- Date: Sun, 8 Sep 2024 21:04:03 GMT
- Title: Waiting time statistics for a double quantum dot coupled with an optical cavity
- Authors: Luis F. Santos, Gabriel T. Landi,
- Abstract summary: A double quantum dot coupled to an optical cavity is a prototypical example of a non-trivial open quantum system.
Recent experimental and theoretical studies show that this system is a candidate for single-photon detection in the microwave domain.
We provide a detailed analysis of the waiting time statistics of this system within the quantum jump unravelling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A double quantum dot coupled to an optical cavity is a prototypical example of a non-trivial open quantum system. Recent experimental and theoretical studies show that this system is a candidate for single-photon detection in the microwave domain. This motivates studies that go beyond just the average current, and also take into account the full counting statistics of photon and electron detections. With this in mind, here we provide a detailed analysis of the waiting time statistics of this system within the quantum jump unravelling, which allows us to extract analytical expressions for the success and failure probabilities, as well as for the inter detection times. Furthermore, by comparing single and multi-photon scenarios, we infer a hierarchy of occurrence probabilities for the different events, highlighting the role of photon interference events in the detection probabilities. Our results therefore provide a direct illustration of how waiting time statistics can be used to optimize a timely and relevant metrological task.
Related papers
- Mode Distinguishability in Multi-photon Interference [0.0]
We develop a model for the simultaneous characterization of polarization and spectro-temporal mode mismatch on the coincidence probabilities.
We study the coincidence probability for coherent states as a function of source intensity, as well as spectro-temporal and polarization mismatch of the incident beams.
arXiv Detail & Related papers (2025-01-24T20:50:14Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Few-Body Quantum Chaos, Localization, and Multi-Photon Entanglement in Optical Synthetic Frequency Dimension [12.86091921421344]
We propose a novel approach to generate controllable frequency-entangled photons by using the concept of synthetic frequency dimension in an optical system.
This work is the first to explore rich and controllable quantum phases beyond single particle in a synthetic dimension.
arXiv Detail & Related papers (2024-06-11T15:14:21Z) - Classification of quantum states of light using random measurements
through a multimode fiber [42.5342379899288]
We present an optical scheme based on sending unknown input states through a multimode fiber.
A short multimode fiber implements effectively a random projection in the spatial domain.
A long-dispersive multimode fiber performs a spatial and spectral projection.
arXiv Detail & Related papers (2023-10-20T15:48:06Z) - Photon emission statistics of a driven microwave cavity [0.0]
We investigate theoretically the statistics of photons emitted from a microwave cavity driven resonantly by an external field.
We employ a Lindblad master equation dressed with counting fields to obtain the generating function of the photon emission statistics.
In the long-time limit, we analyze the factorial cumulants of the photon emission statistics and the large-deviation statistics of the emission currents.
arXiv Detail & Related papers (2023-05-03T09:09:00Z) - Quantum Kernel Evaluation via Hong-Ou-Mandel Interference [11.270300525597227]
We propose and simulate a protocol capable of evaluating quantum kernels using Hong-Ou-Mandel (HOM) interference.
As a result, interfering two photons and using the detected coincidence counts, we can perform a direct measurement and binary classification.
This physical platform confers an exponential quantum advantage also described theoretically in other works.
arXiv Detail & Related papers (2022-12-22T23:55:23Z) - Singular Spectrum Analysis of Two Photon Interference from Distinct
Quantum Emitters [0.0]
Time trace of quantum interference pattern of two photons from two independent solid-state emitters is preprocessed by means of singular spectral analysis.
This approach allows to single out the relevant oscillations from both the envelope and the noise, without resorting to fitting.
arXiv Detail & Related papers (2022-12-01T22:04:05Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Quantum illumination with multiplexed photodetection [13.250854610190078]
We describe a theoretical but experimentally realizable quantum illumination scheme based on non-simultaneous and non-optimal measurements.
For lossy external conditions, the presence of the target object can be revealed earlier using multi-click measurements.
arXiv Detail & Related papers (2022-09-22T15:59:43Z) - Quantum limits to resolution and discrimination of spontaneous emission
lifetimes [0.0]
We focus on the model problem of resolving two mutually incoherent exponential decays with highly overlapping temporal probability profiles.
We find that direct lifetime measurement suffers from an analogue of "Rayleigh's Curse" when the time constants of the two decay channels approach one another.
arXiv Detail & Related papers (2022-02-09T00:13:55Z) - Boson sampling with random numbers of photons [0.0]
We show a novel boson sampling scheme where the probability of success increases instead of decreasing.
This is achieved by sampling at the same time in the number of occupied input ports and the number of input photons per port.
arXiv Detail & Related papers (2020-06-05T17:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.