論文の概要: Shotgun crystal structure prediction using machine-learned formation
energies
- arxiv url: http://arxiv.org/abs/2305.02158v1
- Date: Wed, 3 May 2023 14:46:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 14:36:58.037652
- Title: Shotgun crystal structure prediction using machine-learned formation
energies
- Title(参考訳): 機械学習形成エネルギーを用いたショットガン結晶構造予測
- Authors: Chang Liu (1), Hiromasa Tamaki (2), Tomoyasu Yokoyama (2), Kensuke
Wakasugi (2), Satoshi Yotsuhashi (2), Minoru Kusaba (1), Ryo Yoshida (1, 3
and 4) ((1) The Institute of Statistical Mathematics, (2) Panasonic Holdings
Corporation, (3) National Institute for Materials Science, (4) The Graduate
University for Advanced Studies)
- Abstract要約: 組み立てられた原子の安定あるいは準安定な結晶構造は、エネルギー表面の大域的または局所的なミニマを見つけることによって予測できる。
ここでは,簡単な機械学習ワークフローを用いて,結晶構造予測問題の解決に大きな進歩を遂げた。
本手法は, 結晶状態の高精度なエネルギー予測を可能にする伝達学習という, 2つの重要な技術要素に依存している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stable or metastable crystal structures of assembled atoms can be predicted
by finding the global or local minima of the energy surface with respect to the
atomic configurations. Generally, this requires repeated first-principles
energy calculations that are impractical for large systems, such as those
containing more than 30 atoms in the unit cell. Here, we have made significant
progress in solving the crystal structure prediction problem with a simple but
powerful machine-learning workflow; using a machine-learning surrogate for
first-principles energy calculations, we performed non-iterative, single-shot
screening using a large library of virtually created crystal structures. The
present method relies on two key technical components: transfer learning, which
enables a highly accurate energy prediction of pre-relaxed crystalline states
given only a small set of training samples from first-principles calculations,
and generative models to create promising and diverse crystal structures for
screening. Here, first-principles calculations were performed only to generate
the training samples, and for the optimization of a dozen or fewer finally
narrowed-down crystal structures. Our shotgun method was more than 5--10 times
less computationally demanding and achieved an outstanding prediction accuracy
that was 2--6 times higher than that of the conventional methods that rely
heavily on iterative first-principles calculations.
- Abstract(参考訳): 組み立てられた原子の安定あるいは準安定な結晶構造は、原子配置に関してエネルギー表面の大域的または局所的なミニマを見つけることで予測できる。
一般に、これは単位セルに30個以上の原子を含むような大きなシステムでは実用的でない第一原理エネルギー計算を繰り返す必要がある。
そこで我々は, 簡単な機械学習ワークフローを用いて, 結晶構造予測問題の解決に多大な進歩を遂げた; 第一原理エネルギー計算に機械学習サロゲートを用いて, 仮想的に生成した結晶構造の大規模なライブラリを用いて, 非定位単発スクリーニングを行った。
本手法は, 第一原理計算から得られた少数のトレーニングサンプルのみを用いて, 結晶前状態の高精度なエネルギー予測を可能にする伝達学習と, 有望かつ多種多様な結晶構造をスクリーニングするための生成モデルである。
ここでは、トレーニングサンプルの生成と、最終的に狭くなった結晶構造の最適化のために、第一原理計算を行った。
ショットガン法は計算要求の5~10倍以下であり, 逐次第一原理計算に大きく依存する従来の手法の2~6倍の精度で予測精度が向上した。
関連論文リスト
- Generative Hierarchical Materials Search [91.93125016916463]
結晶構造の制御可能な生成のための生成階層材料探索(GenMS)を提案する。
GenMSは(1)高レベル自然言語を入力とし、結晶に関する中間テキスト情報を生成する言語モデルからなる。
GenMSはまた、生成された結晶構造から特性(たとえば生成エネルギー)を予測するためにグラフニューラルネットワークを使用する。
論文 参考訳(メタデータ) (2024-09-10T17:51:28Z) - AlphaCrystal-II: Distance matrix based crystal structure prediction using deep learning [4.437756445215657]
このAlphaCrystal-IIは、既存の結晶構造に見られる原子間相互作用パターンを多用した、知識に基づく新しいソリューションである。
既知の結晶構造の原子間関係の富を生かして、構造予測における顕著な有効性と信頼性を示す。
論文 参考訳(メタデータ) (2024-04-07T05:17:43Z) - Complete and Efficient Graph Transformers for Crystal Material Property Prediction [53.32754046881189]
結晶構造は、3次元空間の正則格子に沿って繰り返される原始単位セル内の原子塩基によって特徴づけられる。
本稿では,各原子の格子に基づく表現を確立するために,単位細胞の周期パターンを利用する新しい手法を提案する。
結晶材料に特化して設計されたSE(3)トランスであるComFormerを提案する。
論文 参考訳(メタデータ) (2024-03-18T15:06:37Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
本研究は, 化学安定性や化学組成など, 新しい結晶構造を創出することを目的としている。
提案手法の新規性は、結晶細胞の格子が固定されていないという事実にある。
対称性の制約を尊重し、計算上の優位性をもたらす多グラフ結晶表現が導入された。
論文 参考訳(メタデータ) (2023-10-16T02:53:24Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
本稿では,結晶構造の生成モデルであるCrystal-GFNを紹介する。
本稿では,MatBenchで学習した新しいプロキシ機械学習モデルにより予測された結晶構造の原子1個あたりの生成エネルギーを目的として利用する。
その結果、Crystal-GFNは低(中間-3.1 eV/原子)で生成エネルギーが予測される非常に多様な結晶をサンプリングできることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:36:55Z) - Equivariant Parameter Sharing for Porous Crystalline Materials [4.271235935891555]
既存の結晶特性予測法は、制限的すぎる制約を持つか、単位細胞間で対称性を組み込むのみである。
我々は、結晶の単位セルの対称性をアーキテクチャに組み込んだモデルを開発し、多孔質構造を明示的にモデル化する。
提案手法は, 既存の結晶特性予測法よりも優れた性能を示し, 対称性の包含によりより効率的なモデルが得られることを確認した。
論文 参考訳(メタデータ) (2023-04-04T08:33:13Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
我々は、高非線形電子回折パターンを定量的構造因子画像に変換するために、FCU-Netと呼ばれるディープニューラルネットワークを実装した。
結晶構造の異なる組み合わせを含む20,000以上のユニークな動的回折パターンを用いてFCU-Netを訓練した。
シミュレーションされた回折パターンライブラリ、FCU-Netの実装、訓練されたモデルの重み付けは、オープンソースリポジトリで自由に利用可能です。
論文 参考訳(メタデータ) (2022-02-01T03:53:39Z) - Crystal structure prediction with machine learning-based element
substitution [5.613512701893759]
与えられた化学組成によって形成されるエネルギー的に安定な結晶構造の予測は、固体物理学における中心的な問題である。
本稿では,メカニカルラーニングと呼ばれる機械学習アルゴリズムを利用した結晶構造予測の一手法を提案する。
未知の結晶構造を持つ所定のクエリ合成では、テンプレート結晶の集合を結晶構造データベースから自動的に選択する。
論文 参考訳(メタデータ) (2022-01-26T21:06:24Z) - An invertible crystallographic representation for general inverse design
of inorganic crystals with targeted properties [10.853822721106205]
一般逆設計(所与の要素や結晶構造に限らず)が可能な枠組みを提案する。
このフレームワークは、ユーザが定義した形成エネルギー、バンドギャップ、熱電(TE)パワーファクター、およびそれらの組み合わせを備えた新しい結晶を生成する。
結果は、生成モデルを用いたプロパティ駆動の一般逆設計に向けた重要なステップである。
論文 参考訳(メタデータ) (2020-05-15T15:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。