論文の概要: Nonparametric Generative Modeling with Conditional Sliced-Wasserstein
Flows
- arxiv url: http://arxiv.org/abs/2305.02164v2
- Date: Wed, 31 May 2023 05:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 02:29:49.051518
- Title: Nonparametric Generative Modeling with Conditional Sliced-Wasserstein
Flows
- Title(参考訳): 条件付きスライス・wasserstein流による非パラメトリック生成モデル
- Authors: Chao Du, Tianbo Li, Tianyu Pang, Shuicheng Yan, Min Lin
- Abstract要約: SWF(Sliced-Wasserstein Flow)は、非パラメトリックな生成モデルに対する有望なアプローチであるが、その最適な生成品質と条件付きモデリング能力の欠如により広く採用されていない。
本研究では,SWF の簡易かつ効果的な拡張である条件付きスライス・ワッサースタインフロー (CSWF) を提案する。
- 参考スコア(独自算出の注目度): 101.31862036510701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sliced-Wasserstein Flow (SWF) is a promising approach to nonparametric
generative modeling but has not been widely adopted due to its suboptimal
generative quality and lack of conditional modeling capabilities. In this work,
we make two major contributions to bridging this gap. First, based on a
pleasant observation that (under certain conditions) the SWF of joint
distributions coincides with those of conditional distributions, we propose
Conditional Sliced-Wasserstein Flow (CSWF), a simple yet effective extension of
SWF that enables nonparametric conditional modeling. Second, we introduce
appropriate inductive biases of images into SWF with two techniques inspired by
local connectivity and multiscale representation in vision research, which
greatly improve the efficiency and quality of modeling images. With all the
improvements, we achieve generative performance comparable with many deep
parametric generative models on both conditional and unconditional tasks in a
purely nonparametric fashion, demonstrating its great potential.
- Abstract(参考訳): sliced-wasserstein flow (swf) は非パラメトリック生成モデリングに有望なアプローチであるが、その準最適生成品質と条件付きモデリング能力の欠如のために広く採用されていない。
この作業では、このギャップを埋めることに2つの大きな貢献をします。
まず,(一定の条件下で)関節分布のSWFが条件分布のSWFと一致するという快適な観察に基づいて,SWFの簡易かつ効果的な拡張である条件スライデッド・ワッサースタインフロー(CSWF)を提案する。
第2に、画像の適切な帰納バイアスをSWFに導入し、局所的な接続性と視覚研究におけるマルチスケール表現に着想を得て、画像の効率と品質を大幅に向上させる。
これらの改良により、条件付きタスクと非条件付きタスクの両方において、多くの深度パラメトリック生成モデルに匹敵する生成性能を実現し、その大きな可能性を示す。
関連論文リスト
- Advancing Diffusion Models: Alias-Free Resampling and Enhanced Rotational Equivariance [0.0]
拡散モデルは、モデルによって引き起こされたアーティファクトと、画像の忠実性に制限された安定性によって、依然として挑戦されている。
拡散モデルのUNetアーキテクチャにエイリアスフリー再サンプリング層を統合することを提案する。
CIFAR-10, MNIST, MNIST-Mなどのベンチマークデータを用いた実験の結果, 画像品質が一貫した向上を示した。
論文 参考訳(メタデータ) (2024-11-14T04:23:28Z) - Flow Generator Matching [35.371071097381346]
フロージェネレータマッチング(FGM)は、フローマッチングモデルのサンプリングをワンステップ生成に高速化するように設計されている。
CIFAR10の非条件生成ベンチマークでは、1段階のFGMモデルが新たなFr'echet Inception Distance(FID)スコア3.08を達成した。
MM-DiT-FGMワンステップテキスト・ツー・イメージモデルでは,業界レベルでの優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-10-25T05:41:28Z) - Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - A Bayesian Non-parametric Approach to Generative Models: Integrating
Variational Autoencoder and Generative Adversarial Networks using Wasserstein
and Maximum Mean Discrepancy [2.966338139852619]
GAN(Generative Adversarial Network)とVAE(VAE)は、最も顕著で広く研究されている生成モデルである。
ベイズ的非パラメトリック(BNP)アプローチを用いて、GANとVAEを融合する。
本稿では,GANの識別能力とVAEの再構成能力とを融合させることにより,多種多様な生成タスクにおいて優れた性能を実現する。
論文 参考訳(メタデータ) (2023-08-27T08:58:31Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z) - DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from
Low-Dimensional Latents [26.17940552906923]
本稿では,拡散モデルフレームワーク内にVAEを統合する新しい生成フレームワークであるDiffuseVAEを紹介する。
提案モデルは高分解能サンプルを生成でき、標準ベンチマークの最先端モデルに匹敵する品質を示す。
論文 参考訳(メタデータ) (2022-01-02T06:44:23Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
マルチスケール自己回帰前処理(mAR)を通した遅延空間におけるチャネルワイド依存性を導入する。
我々のmARは、分割結合フロー層(mAR-SCF)を持つモデルに先立って、複雑なマルチモーダルデータの依存関係をよりよく捉えます。
我々は,mAR-SCFにより画像生成品質が向上し,FIDとインセプションのスコアは最先端のフローベースモデルと比較して向上したことを示す。
論文 参考訳(メタデータ) (2020-04-08T09:07:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。