Can Feature Engineering Help Quantum Machine Learning for Malware
Detection?
- URL: http://arxiv.org/abs/2305.02396v2
- Date: Wed, 9 Aug 2023 04:23:45 GMT
- Title: Can Feature Engineering Help Quantum Machine Learning for Malware
Detection?
- Authors: Ran Liu, Maksim Eren, Charles Nicholas
- Abstract summary: We propose a hybrid framework of theoretical Quantum ML to address this problem.
VQC with XGBoost selected features can get a 78.91% test accuracy on the simulator.
The average accuracy for the model trained using the features selected with XGBoost was 74%.
- Score: 7.010669841466896
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the increasing number and sophistication of malware attacks, malware
detection systems based on machine learning (ML) grow in importance. At the
same time, many popular ML models used in malware classification are supervised
solutions. These supervised classifiers often do not generalize well to novel
malware. Therefore, they need to be re-trained frequently to detect new malware
specimens, which can be time-consuming. Our work addresses this problem in a
hybrid framework of theoretical Quantum ML, combined with feature selection
strategies to reduce the data size and malware classifier training time. The
preliminary results show that VQC with XGBoost selected features can get a
78.91% test accuracy on the simulator. The average accuracy for the model
trained using the features selected with XGBoost was 74% (+- 11.35%) on the IBM
5 qubits machines.
Related papers
- Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach [0.0]
We present a machine learning-based system for detecting obfuscated malware that is highly accurate, lightweight and interpretable.
Our system is capable of detecting 15 malware subtypes despite being exclusively trained on one malware subtype, namely the Transponder from the Spyware family.
The Transponder-focused model exhibited high accuracy, exceeding 99.8%, with an average processing speed of 5.7 microseconds per file.
arXiv Detail & Related papers (2024-07-07T12:41:40Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - Creating Valid Adversarial Examples of Malware [4.817429789586127]
We present a generator of adversarial malware examples using reinforcement learning algorithms.
Using the PPO algorithm, we achieved an evasion rate of 53.84% against the gradient-boosted decision tree (GBDT) model.
random application of our functionality-preserving portable executable modifications successfully evades leading antivirus engines.
arXiv Detail & Related papers (2023-06-23T16:17:45Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Comprehensive Efficiency Analysis of Machine Learning Algorithms for
Developing Hardware-Based Cybersecurity Countermeasures [0.0]
Modern computing systems have led cyber adversaries to create more sophisticated malware than was previously available.
Modern detection techniques use the machine learning field and hardware to boost the detection rates of malicious software.
A problem emerges when malware with no comparable HPC values comes into contact with these new techniques.
arXiv Detail & Related papers (2022-01-05T22:08:57Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
We propose an explainability-guided and model-agnostic testing framework for robustness of malware detectors.
We then use this framework to test several state-of-the-art malware detectors' abilities to detect manipulated malware.
Our findings shed light on the limitations of current malware detectors, as well as how they can be improved.
arXiv Detail & Related papers (2021-11-19T08:02:38Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
We show how a malicious actor trains a surrogate model to discover binary mutations that cause an instance to be misclassified.
Then, mutated malware is sent to the victim model that takes the place of an antivirus API to test whether it can evade detection.
arXiv Detail & Related papers (2021-06-15T03:31:02Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Classifying Malware Images with Convolutional Neural Network Models [2.363388546004777]
In this paper, we use several convolutional neural network (CNN) models for static malware classification.
The Inception V3 model achieves a test accuracy of 99.24%, which is better than the accuracy of 98.52% achieved by the current state-of-the-art system.
arXiv Detail & Related papers (2020-10-30T07:39:30Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.