論文の概要: GAMIVAL: Video Quality Prediction on Mobile Cloud Gaming Content
- arxiv url: http://arxiv.org/abs/2305.02422v3
- Date: Tue, 29 Aug 2023 22:12:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 17:11:29.166086
- Title: GAMIVAL: Video Quality Prediction on Mobile Cloud Gaming Content
- Title(参考訳): GAMIVAL:モバイルクラウドゲームコンテンツにおけるビデオ品質予測
- Authors: Yu-Chih Chen, Avinab Saha, Chase Davis, Bo Qiu, Xiaoming Wang, Rahul
Gowda, Ioannis Katsavounidis, Alan C. Bovik
- Abstract要約: 我々はGAMIVAL(Gaming Video Quality Evaluator)と呼ばれるゲーム固有のNR VQAモデルを開発した。
サポートベクタ回帰(SVR)を回帰器として使用するGAMIVALは,新たなLIVE-Meta Mobile Cloud Gaming(LIVE-Meta MCG)ビデオ品質データベースにおいて,優れたパフォーマンスを実現している。
- 参考スコア(独自算出の注目度): 30.96557290048384
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The mobile cloud gaming industry has been rapidly growing over the last
decade. When streaming gaming videos are transmitted to customers' client
devices from cloud servers, algorithms that can monitor distorted video quality
without having any reference video available are desirable tools. However,
creating No-Reference Video Quality Assessment (NR VQA) models that can
accurately predict the quality of streaming gaming videos rendered by computer
graphics engines is a challenging problem, since gaming content generally
differs statistically from naturalistic videos, often lacks detail, and
contains many smooth regions. Until recently, the problem has been further
complicated by the lack of adequate subjective quality databases of mobile
gaming content. We have created a new gaming-specific NR VQA model called the
Gaming Video Quality Evaluator (GAMIVAL), which combines and leverages the
advantages of spatial and temporal gaming distorted scene statistics models, a
neural noise model, and deep semantic features. Using a support vector
regression (SVR) as a regressor, GAMIVAL achieves superior performance on the
new LIVE-Meta Mobile Cloud Gaming (LIVE-Meta MCG) video quality database.
- Abstract(参考訳): モバイルのクラウドゲーム産業はこの10年間で急速に成長している。
ストリーミングゲームビデオがクラウドサーバから顧客のクライアントデバイスに送信される場合、参照ビデオなしで歪んだビデオ品質をモニタできるアルゴリズムが望ましいツールである。
しかし、コンピュータグラフィックスエンジンでレンダリングされたストリーミングゲームビデオの品質を正確に予測できるNo-Reference Video Quality Assessment (NR VQA)モデルを作成することは難しい問題である。
最近まで、モバイルゲームコンテンツの主観的品質データベースが不十分なため、この問題はさらに複雑だった。
我々はゲーム専用nr vqaモデルであるgameing video quality evaluator(gamival)を作成し、空間的および時間的ゲーム歪曲されたシーン統計モデル、ニューラルノイズモデル、深い意味的特徴の利点を活用した。
サポートベクタ回帰(SVR)を回帰器として使用するGAMIVALは,新たなLIVE-Meta Mobile Cloud Gaming(LIVE-Meta MCG)ビデオ品質データベースにおいて,優れたパフォーマンスを実現する。
関連論文リスト
- Beyond Raw Videos: Understanding Edited Videos with Large Multimodal Model [62.38322742493649]
本稿では,人気のショートビデオプラットフォームであるtextiti.e.,TikTokで動画を編集するためのベンチマークを構築し,エフェクト,面白い,ミーム,ゲームをカバーする。
オープンソースビデオのLMMのほとんどはベンチマークでは不十分であり、ソーシャルメディア上の編集されたショートビデオと通常の生ビデオの間に大きなドメインギャップがあることを示唆している。
LMMの一般化能力を向上させるため,Panda-70M/WebVid生ビデオとTikTok/CapCut編集ビデオの両方に基づいて,提案したベンチマークのトレーニングセットを収集した。
論文 参考訳(メタデータ) (2024-06-15T03:28:52Z) - Study of Subjective and Objective Quality Assessment of Mobile Cloud
Gaming Videos [34.219234345158235]
本稿では,モバイル・クラウド・ゲーム・ビデオ品質評価(MCG-VQA)の多種多様なゲーム・ビデオに対する大規模主観的研究の結果について述べる。
LIVE-Meta Mobile Cloud Gaming (LIVE-Meta-MCG) という新しいデータセットを作成しました。
論文 参考訳(メタデータ) (2023-05-26T21:08:17Z) - Perceptual Quality Assessment of UGC Gaming Videos [60.68777545735441]
我々は、ゲームビデオの成功に特化して設計された新しいVQAモデルを作成しました。
GAME-VQPは、ゲームビデオのユニークな統計特性をうまく予測する。
どちらも他の主流の一般的なVQAモデルよりも優れており、ゲームビデオ用に特別に設計されたVQAモデルより優れている。
論文 参考訳(メタデータ) (2022-03-31T22:44:26Z) - Subjective and Objective Analysis of Streamed Gaming Videos [60.32100758447269]
ゲームビデオにおける主観的および客観的ビデオ品質評価(VQA)モデルについて検討する。
LIVE-YouTube Gaming Video Quality (LIVE-YT-Gaming) と呼ばれる新しいゲームビデオリソースを作成しました。
このデータについて主観的人間調査を行い,61名の被験者が記録した品質評価18,600名を得た。
論文 参考訳(メタデータ) (2022-03-24T03:02:57Z) - FAVER: Blind Quality Prediction of Variable Frame Rate Videos [47.951054608064126]
ビデオ品質アセスメント(VQA)は、最も大規模な多くのアプリケーションに影響を与える重要かつ困難な問題であり続けている。
我々は、フレームレート対応ビデオ評価器w/o参照(FAVER)をダブした、HFRビデオの評価のための第一種ブラインドVQAモデルを提案する。
いくつかのHFRビデオ品質データセットに対する実験により、FAVERは他の盲点VQAアルゴリズムよりも妥当な計算コストで優れていることが示された。
論文 参考訳(メタデータ) (2022-01-05T07:54:12Z) - Blind VQA on 360{\deg} Video via Progressively Learning from Pixels,
Frames and Video [66.57045901742922]
360度ビデオにおけるブラインド視覚品質評価(BVQA)は,没入型マルチメディアシステムの最適化において重要な役割を担っている。
本稿では,球面映像品質に対する人間の知覚の進歩的パラダイムを考察する。
画素,フレーム,ビデオから段階的に学習することで,360度ビデオのための新しいBVQA手法(ProVQA)を提案する。
論文 参考訳(メタデータ) (2021-11-18T03:45:13Z) - Patch-VQ: 'Patching Up' the Video Quality Problem [0.9786690381850356]
No-Reference (NR) Perceptual Video Quality Assessment (VQA) は、ソーシャルメディアおよびストリーミングメディアアプリケーションにおいて複雑で未解決で重要な問題である。
現在のNRモデルでは、実世界の"In-the-wild"ビデオデータ上での予測能力に制限がある。
私たちは、39,000の現実世界の歪曲したビデオと117,000の空間的局所化されたビデオパッチを含む、最も大きな(遠くまで)主観的なビデオ品質データセットを作成します。
論文 参考訳(メタデータ) (2020-11-27T03:46:44Z) - Towards Deep Learning Methods for Quality Assessment of
Computer-Generated Imagery [2.580765958706854]
従来のビデオコンテンツとは対照的に、ゲームコンテンツはいくつかのゲームにおいて非常に高い動きのような特別な特徴を持つ。
本稿では,ゲーム品質評価のためのディープラーニングベースの品質指標を構築する計画について概説する。
論文 参考訳(メタデータ) (2020-05-02T14:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。