論文の概要: PersonaLLM: Investigating the Ability of GPT-3.5 to Express Personality
Traits and Gender Differences
- arxiv url: http://arxiv.org/abs/2305.02547v2
- Date: Thu, 18 May 2023 18:56:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 18:27:51.783171
- Title: PersonaLLM: Investigating the Ability of GPT-3.5 to Express Personality
Traits and Gender Differences
- Title(参考訳): PersonaLLM:GPT-3.5の性格特性と性差の表現能力の検討
- Authors: Hang Jiang, Xiajie Zhang, Xubo Cao, Jad Kabbara
- Abstract要約: 本研究では,大きな言語モデル(LLM)が,ビッグファイブの性格タイプやジェンダーの役割を割り当てた場合に,一貫したパーソナライズされた特徴を持つコンテンツを生成できるかどうかを検討する。
われわれは320のLDMペルソナ(32のビッグファイブパーソナタイプで5人の女性と5人の男性)を作成し、44の古典的なビッグファイブインベントリ(BFI)を完成させ、その子供時代について800ワードの物語を書いた。
その結果、LLMペルソナの自己申告したBFIスコアは、割り当てられた性格タイプと一致しており、5つの特徴全てに大きな効果が認められた。
- 参考スコア(独自算出の注目度): 6.773714108902187
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the many use cases for large language models (LLMs) in the design of
chatbots in various industries and the research showing the importance of
personalizing chatbots to cater to different personality traits, little work
has been done to evaluate whether the behaviors of personalized LLMs can
reflect certain personality traits accurately and consistently. We consider
studying the behavior of LLM-based simulated agents which refer to as LLM
personas and present a case study with GPT-3.5 (text-davinci-003) to
investigate whether LLMs can generate content with consistent, personalized
traits when assigned Big Five personality types and gender roles. We created
320 LLM personas (5 females and 5 males for each of the 32 Big Five personality
types) and prompted them to complete the classic 44-item Big Five Inventory
(BFI) and then write an 800-word story about their childhood. Results showed
that LLM personas' self-reported BFI scores are consistent with their assigned
personality types, with large effect sizes found on all five traits. Moreover,
significant correlations were found between assigned personality types and some
Linguistic Inquiry and Word Count (LIWC) psycholinguistic features of their
writings. For instance, extroversion is associated with pro-social and active
words, and neuroticism is associated with words related to negative emotions
and mental health. Besides, we only found significant differences in using
technological and cultural words in writing between LLM-generated female and
male personas. This work provides a first step for further research on
personalized LLMs and their applications in Human-AI conversation.
- Abstract(参考訳): 様々な産業におけるチャットボットの設計における大規模言語モデル(LLM)の多くのユースケースや、異なる性格特性に対応するためにチャットボットをパーソナライズすることの重要性を示す研究にもかかわらず、パーソナライズされたLLMの挙動が特定の性格特性を正確に、一貫して反映できるかどうかを評価することはほとんど行われていない。
GPT-3.5(text-davinci-003)を用いたケーススタディを行い、大きな5人格と性別の役割を割り当てた場合、LLMが一貫した個性特性を持つコンテンツを生成できるかどうかを検討する。
われわれは320のLDMペルソナ(32のビッグファイブパーソナタイプで5人の女性と5人の男性)を作成し、44の古典的なビッグファイブインベントリ(BFI)を完成させ、その子供時代について800ワードの物語を書いた。
その結果、LLMペルソナの自己申告したBFIスコアは、割り当てられた性格タイプと一致しており、5つの特徴全てに大きな効果が認められた。
さらに、与えられたパーソナリティタイプと一部の言語調査と単語数(liwc)との間に有意な相関が認められた。
例えば、外向性は社会的・活動的な単語と関連しており、神経症は否定的な感情や精神健康に関連する単語と関連している。
また, LLM 生成した男女の人格記述において, 技術的, 文化的用語の使用に有意な差が認められた。
この研究は、パーソナライズされたLLMとそのヒューマンAI会話への応用について、さらなる研究のための第一歩となる。
関連論文リスト
- LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
大規模言語モデル(LLM)は、日常の生活や研究にますます利用されている。
与えられたLLMの性格を測定することは、現在課題である。
言語モデル言語パーソナリティアセスメント(LMLPA)は,LLMの言語的パーソナリティを評価するシステムである。
論文 参考訳(メタデータ) (2024-10-23T07:48:51Z) - Rediscovering the Latent Dimensions of Personality with Large Language Models as Trait Descriptors [4.814107439144414]
大規模言語モデル(LLM)における潜在人格次元を明らかにする新しいアプローチを提案する。
実験の結果, LLMは, 直接アンケート入力に頼ることなく, 外転, 同意性, 良性, 神経性, 開放性などの中核的性格を「発見」することがわかった。
抽出した主成分を用いて、ビッグファイブ次元に沿ったパーソナリティを評価し、微調整モデルよりも平均的なパーソナリティ予測精度を最大5%向上させることができる。
論文 参考訳(メタデータ) (2024-09-16T00:24:40Z) - Secret Keepers: The Impact of LLMs on Linguistic Markers of Personal Traits [6.886654996060662]
本研究では,Large Language Models (LLMs) が,人口動態や心理的特徴の言語マーカーに与える影響について検討する。
筆者らの個人的特徴に対する言語パターンの予測能力は, LLMの使用によってわずかに低下するが, 顕著な変化は稀である。
論文 参考訳(メタデータ) (2024-03-30T06:49:17Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
パーソナリティ検出は、ソーシャルメディア投稿に根ざした性格特性を検出することを目的としている。
既存のほとんどのメソッドは、事前訓練された言語モデルを微調整することで、ポスト機能を直接学習する。
本稿では,大規模言語モデル (LLM) に基づくテキスト拡張強化人格検出モデルを提案する。
論文 参考訳(メタデータ) (2024-03-12T12:10:18Z) - Driving Generative Agents With Their Personality [0.0]
本研究では,ゲームキャラクタ開発における心理測定値,特にパーソナリティ情報を活用するためのLarge Language Models (LLMs) の可能性を探る。
この研究は、LLMが与えられたパーソナリティプロファイルを一貫して表現できることを示し、ゲームキャラクタの人間的な特性を高める。
論文 参考訳(メタデータ) (2024-02-21T21:29:57Z) - LLMs Simulate Big Five Personality Traits: Further Evidence [51.13560635563004]
Llama2, GPT4, Mixtralでシミュレートされた性格特性を解析した。
このことは、パーソナリティ特性をシミュレートするLLMの能力のより広範な理解に寄与する。
論文 参考訳(メタデータ) (2024-01-31T13:45:25Z) - Challenging the Validity of Personality Tests for Large Language Models [2.9123921488295768]
大規模言語モデル(LLM)は、テキストベースのインタラクションにおいて、ますます人間らしく振る舞う。
人格検査に対するLLMの反応は、人間の反応から体系的に逸脱する。
論文 参考訳(メタデータ) (2023-11-09T11:54:01Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - Can ChatGPT Assess Human Personalities? A General Evaluation Framework [70.90142717649785]
大きな言語モデル(LLM)は、様々な分野で印象的な成果を上げてきたが、その潜在的な人間のような心理学はいまだに研究されていない。
本稿では,Mers Briggs Type Indicator (MBTI) テストに基づく人格評価のための総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-01T06:16:14Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
人間の個性理論を機械行動研究のツールとして活用することで,心理測定研究からインスピレーションを得た。
これらの疑問に答えるために,機械の動作を研究するためのMachine Personality Inventory(MPI)ツールを紹介した。
MPIは、ビッグファイブ・パーソナリティ・ファクター(Big Five Personality Factors、ビッグファイブ・パーソナリティ・ファクター)理論とパーソナリティ評価在庫に基づく標準化されたパーソナリティ・テストに従う。
パーソナリティ・プロンプト法(P2法)を考案し、特定のパーソナリティを持つLSMを制御可能な方法で誘導する。
論文 参考訳(メタデータ) (2022-05-20T07:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。