論文の概要: How to Enhance Causal Discrimination of Utterances: A Case on Affective
Reasoning
- arxiv url: http://arxiv.org/abs/2305.02615v2
- Date: Fri, 13 Oct 2023 09:02:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 17:57:12.223472
- Title: How to Enhance Causal Discrimination of Utterances: A Case on Affective
Reasoning
- Title(参考訳): 発話の因果判別を促進する方法--感情的推論を事例として
- Authors: Hang Chen and Jing Luo and Xinyu Yang and Wenjing Zhu
- Abstract要約: 本稿では,会話プロセスにテクスティ.i.d.ノイズ項を組み込むことにより,構造因果モデル(SCM)を構築することを提案する。
ディープラーニングの実装を容易にするため,非構造化会話データを扱うためのcognフレームワークを導入し,非可観測ノイズを学習可能な「単純な原因」とみなすオートエンコーダアーキテクチャを採用した。
- 参考スコア(独自算出の注目度): 22.11437627661179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Our investigation into the Affective Reasoning in Conversation (ARC) task
highlights the challenge of causal discrimination. Almost all existing models,
including large language models (LLMs), excel at capturing semantic
correlations within utterance embeddings but fall short in determining the
specific causal relationships. To overcome this limitation, we propose the
incorporation of \textit{i.i.d.} noise terms into the conversation process,
thereby constructing a structural causal model (SCM). It explores how distinct
causal relationships of fitted embeddings can be discerned through independent
conditions. To facilitate the implementation of deep learning, we introduce the
cogn frameworks to handle unstructured conversation data, and employ an
autoencoder architecture to regard the unobservable noise as learnable
"implicit causes." Moreover, we curate a synthetic dataset that includes i.i.d.
noise. Through comprehensive experiments, we validate the effectiveness and
interpretability of our approach. Our code is available in
https://github.com/Zodiark-ch/mater-of-our-EMNLP2023-paper.
- Abstract(参考訳): Affective Reasoning in Conversation (ARC)タスクに関する調査は、因果差別の課題を浮き彫りにしている。
大言語モデル(llm)を含む既存のモデルのほとんどは、発話埋め込み内の意味的相関を捉えるのに優れているが、特定の因果関係を決定するのに不足している。
この制限を克服するため、会話プロセスに「textit{i.d.}」ノイズ項を組み込むことを提案し、構造因果モデル(SCM)を構築する。
これは、組込みの異なる因果関係が独立な条件を通じてどのように識別できるかを探求する。
ディープラーニングの実装を容易にするため,非構造化会話データを扱うためのcognフレームワークを導入し,非可観測ノイズを学習可能な「単純な原因」とみなすオートエンコーダアーキテクチャを採用した。
さらに、ノイズを含む合成データセットをキュレートする。
総合的な実験を通して,本手法の有効性と解釈可能性を検証する。
私たちのコードはhttps://github.com/Zodiark-ch/mater-of-our-EMNLP2023-paperで公開しています。
関連論文リスト
- Complex Reasoning over Logical Queries on Commonsense Knowledge Graphs [61.796960984541464]
論理クエリをサンプリングして作成した新しいデータセットであるCOM2(COMplex COMmonsense)を提示する。
我々は、手書きのルールと大きな言語モデルを用いて、複数の選択とテキスト生成の質問に言語化します。
COM2でトレーニングされた言語モデルでは、複雑な推論能力が大幅に改善されている。
論文 参考訳(メタデータ) (2024-03-12T08:13:52Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
本研究では,CARE CA(Content Aware Reasoning Enhancement with Counterfactual Analysis)フレームワークという新しいアーキテクチャを提案する。
提案するフレームワークには,ConceptNetと反ファクト文を備えた明示的な因果検出モジュールと,大規模言語モデルによる暗黙的な因果検出が組み込まれている。
ConceptNetの知識は、因果的発見、因果的識別、反事実的推論といった複数の因果的推論タスクのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:02:14Z) - Enhancing Systematic Decompositional Natural Language Inference Using Informal Logic [51.967603572656266]
我々は,分解包含を注釈付けするための一貫した理論的なアプローチを導入する。
我々の新しいデータセットRDTEは、前回の分解エンターメントデータセットよりもかなり高い内部整合性(+9%)を持つことがわかった。
また,RDTE による知識蒸留によるエンテーメント分類器の訓練や,エンテーメントツリー推論エンジンへの導入により,精度と検証精度が向上することが確認された。
論文 参考訳(メタデータ) (2024-02-22T18:55:17Z) - Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive
Learning [71.8876256714229]
本稿では,知識ベース対話システムの堅牢性向上を目的とした,エンティティベースのコントラスト学習フレームワークを提案する。
提案手法は,自動評価スコアの点から,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-01-09T05:16:52Z) - SSL Framework for Causal Inconsistency between Structures and
Representations [23.035761299444953]
深層学習と因果発見のクロスポリン化は、画像、ビデオ、テキストなどの統計的でないデータ形式における因果関係の解明を目指す、急成長する研究分野を触媒している。
我々は、不確定データに適した介入戦略を理論的に開発し、因果一貫性条件(CCC)を導出する。
CCCは様々な分野で重要な役割を果たす可能性がある。
論文 参考訳(メタデータ) (2023-10-28T08:29:49Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Learning a Structural Causal Model for Intuition Reasoning in
Conversation [20.243323155177766]
NLP研究の重要な側面である推論は、一般的なモデルによって適切に対処されていない。
我々は、各発話がどのように情報チャネルを受信し、活性化するかを説明する会話認知モデル(CCM)を開発した。
変分推論を利用することで、暗黙的な原因の代用を探索し、その観測不可能性の問題に対処し、証拠の低い境界を通して発話の因果表現を再構築する。
論文 参考訳(メタデータ) (2023-05-28T13:54:09Z) - Enhancing Contrastive Learning with Noise-Guided Attack: Towards
Continual Relation Extraction in the Wild [57.468184469589744]
我々はtextbfContrative textbfLearning(NaCL) における textbfNoise-guided textbf attack という名前の耐雑音性コントラストフレームワークを開発する。
直接雑音除去や到達不能雑音回避と比較して,攻撃により与えられた雑音ラベルに一致するように特徴空間を変更する。
論文 参考訳(メタデータ) (2023-05-11T18:48:18Z) - Cross-Modal Causal Relational Reasoning for Event-Level Visual Question
Answering [134.91774666260338]
既存の視覚的質問応答法は、しばしばクロスモーダルなスプリアス相関と過度に単純化されたイベントレベルの推論プロセスに悩まされる。
本稿では,イベントレベルの視覚的質問応答の課題に対処するために,モーダルな因果関係推論のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-26T04:25:54Z) - Speaker-Oriented Latent Structures for Dialogue-Based Relation
Extraction [10.381257436462116]
そこで我々は,話者指向の潜在構造を明瞭に誘導し,DiaREを改善する新しいモデルSOLSを提案する。
具体的には,発話境界を超えたトークン間の関係を捉えるために,潜在構造を学習する。
学習過程において、話者固有の正規化手法は、話者に関連するキーキーを徐々に強調し、無関係なキーを消去する。
論文 参考訳(メタデータ) (2021-09-11T04:24:51Z) - Deep Structural Causal Models for Tractable Counterfactual Inference [24.26709730032233]
我々は、ディープラーニングコンポーネントを用いた構造因果モデル(SCM)を構築するための一般的な枠組みを定式化する。
我々のフレームワークは、MNIST上に構築された合成データセットと、実際の脳MRIスキャンの医療データセットに基づいて検証されている。
論文 参考訳(メタデータ) (2020-06-11T14:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。