Improved precision scaling for simulating coupled quantum-classical
dynamics
- URL: http://arxiv.org/abs/2307.13033v1
- Date: Mon, 24 Jul 2023 18:00:03 GMT
- Title: Improved precision scaling for simulating coupled quantum-classical
dynamics
- Authors: Sophia Simon, Raffaele Santagati, Matthias Degroote, Nikolaj Moll,
Michael Streif, Nathan Wiebe
- Abstract summary: We present a super-polynomial improvement in the precision scaling of quantum simulations for coupled classical-quantum systems.
By employing a framework based on the Koopman-von Neumann formalism, we express the Liouville equation of motion as unitary dynamics.
We demonstrate that these simulations can be performed in both microcanonical and canonical ensembles.
- Score: 0.17126708168238122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a super-polynomial improvement in the precision scaling of quantum
simulations for coupled classical-quantum systems in this paper. Such systems
are found, for example, in molecular dynamics simulations within the
Born-Oppenheimer approximation. By employing a framework based on the
Koopman-von Neumann formalism, we express the Liouville equation of motion as
unitary dynamics and utilize phase kickback from a dynamical quantum simulation
to calculate the quantum forces acting on classical particles. This approach
allows us to simulate the dynamics of these particles without the overheads
associated with measuring gradients and solving the equations of motion on a
classical computer, resulting in a super-polynomial advantage at the price of
increased space complexity. We demonstrate that these simulations can be
performed in both microcanonical and canonical ensembles, enabling the
estimation of thermodynamic properties from the prepared probability density.
Related papers
- Quantum enhanced Monte Carlo simulation for photon interaction cross sections [4.764631050395652]
High-energy physics simulations traditionally rely on classical Monte Carlo methods to model complex particle interactions.
We introduce a novel quantum-enhanced simulation framework that integrates discrete-time quantum walks with quantum amplitude estimation.
arXiv Detail & Related papers (2025-02-20T09:05:37Z) - Simulating Non-Markovian Quantum Dynamics on NISQ Computers Using the Hierarchical Equations of Motion [0.0]
We introduce a quantum algorithm designed to simulate non-Markovian dynamics of open quantum systems.
Our approach enables the implementation of arbitrary quantum master equations on noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2024-11-18T20:41:10Z) - Truncated Gaussian basis approach for simulating many-body dynamics [0.0]
The approach constructs an effective Hamiltonian within a reduced subspace, spanned by fermionic Gaussian states, and diagonalizes it to obtain approximate eigenstates and eigenenergies.
Symmetries can be exploited to perform parallel computation, enabling to simulate systems with much larger sizes.
For quench dynamics we observe that time-evolving wave functions in the truncated subspace facilitates the simulation of long-time dynamics.
arXiv Detail & Related papers (2024-10-05T15:47:01Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Hybrid Stabilizer Matrix Product Operator [44.99833362998488]
We introduce a novel hybrid approach combining tensor network methods with the stabilizer formalism to address the challenges of simulating many-body quantum systems.
We demonstrate the effectiveness of our method through applications to random Clifford T-doped circuits and Random Clifford Floquet Dynamics.
arXiv Detail & Related papers (2024-05-09T18:32:10Z) - Linear-scale simulations of quench dynamics [2.7615495205203318]
We develop a linear-scale computational simulation technique for the non-equilibrium dynamics of quantum quench systems.
An expansion-based method allows us to efficiently compute the Loschmidt echo for infinitely large systems.
We observe wave vector-independent dynamical phase transitions in self-dual localization models.
arXiv Detail & Related papers (2023-11-16T04:18:32Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics [3.2692763046599502]
Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics.
To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed.
arXiv Detail & Related papers (2023-05-04T21:16:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.