論文の概要: Bayesian Reinforcement Learning with Limited Cognitive Load
- arxiv url: http://arxiv.org/abs/2305.03263v1
- Date: Fri, 5 May 2023 03:29:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 15:28:47.527706
- Title: Bayesian Reinforcement Learning with Limited Cognitive Load
- Title(参考訳): 認知負荷を限定したベイズ強化学習
- Authors: Dilip Arumugam, Mark K. Ho, Noah D. Goodman, Benjamin Van Roy
- Abstract要約: 適応行動の理論は、エージェントの学習履歴、決定、容量制約の間の複雑な相互作用を考慮に入れなければならない。
コンピュータ科学における最近の研究は、強化学習、ベイズ的意思決定、レート歪曲理論からアイデアをブリッジすることで、これらの力学を形作る原理を明確にし始めている。
- 参考スコア(独自算出の注目度): 43.19983737333797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: All biological and artificial agents must learn and make decisions given
limits on their ability to process information. As such, a general theory of
adaptive behavior should be able to account for the complex interactions
between an agent's learning history, decisions, and capacity constraints.
Recent work in computer science has begun to clarify the principles that shape
these dynamics by bridging ideas from reinforcement learning, Bayesian
decision-making, and rate-distortion theory. This body of work provides an
account of capacity-limited Bayesian reinforcement learning, a unifying
normative framework for modeling the effect of processing constraints on
learning and action selection. Here, we provide an accessible review of recent
algorithms and theoretical results in this setting, paying special attention to
how these ideas can be applied to studying questions in the cognitive and
behavioral sciences.
- Abstract(参考訳): すべての生物学的および人工的なエージェントは、情報を処理する能力に制限のある決定を学習し、行う必要がある。
このように、適応行動の一般的な理論は、エージェントの学習履歴、決定、およびキャパシティ制約の間の複雑な相互作用を考慮すべきである。
コンピュータ科学における最近の研究は、強化学習、ベイズ的意思決定、レート歪曲理論からアイデアをブリッジすることで、これらの力学を形作る原理を明確にし始めている。
この研究は、処理制約が学習と行動選択に与える影響をモデル化するための統一規範的枠組みである、容量制限ベイズ強化学習の説明を提供する。
本稿では,近年のアルゴリズムと理論的結果について,認知・行動科学における問題研究にこれらのアイデアをどのように適用できるかについて,特に注目する。
関連論文リスト
- Demonstrating the Continual Learning Capabilities and Practical Application of Discrete-Time Active Inference [0.0]
アクティブ推論は、エージェントが環境とどのように相互作用するかを理解するための数学的フレームワークである。
本稿では,個別の時間環境で動作するエージェントのための連続学習フレームワークを提案する。
我々は、エージェントがモデルを再学習し、効率的に洗練する能力を示し、金融や医療といった複雑な分野に適合する。
論文 参考訳(メタデータ) (2024-09-30T21:18:46Z) - Resilient Constrained Learning [94.27081585149836]
本稿では,学習課題を同時に解決しながら,要求に適応する制約付き学習手法を提案する。
我々はこの手法を、その操作を変更することで破壊に適応する生態システムを記述する用語に因んで、レジリエントな制約付き学習と呼ぶ。
論文 参考訳(メタデータ) (2023-06-04T18:14:18Z) - On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement
Learning [43.19983737333797]
現実世界の意思決定エージェントは、限られた情報処理能力の下で、認知や計算資源にアクセスできない。
本稿では,生物エージェントと人工エージェントの容量制限意思決定に関する情報理論モデルに関する簡単な調査を行う。
論文 参考訳(メタデータ) (2022-10-30T16:39:40Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - Learning-Driven Decision Mechanisms in Physical Layer: Facts,
Challenges, and Remedies [23.446736654473753]
本稿では, 物理層に共通する仮定を, 実用システムとの相違点を強調するために紹介する。
解決策として,実装手順と課題を考慮して学習アルゴリズムを検討する。
論文 参考訳(メタデータ) (2021-02-14T22:26:44Z) - Interpretable Reinforcement Learning Inspired by Piaget's Theory of
Cognitive Development [1.7778609937758327]
本稿では,思考の言語(LOTH)やスクリプト理論,ピアジェの認知発達理論などの理論が相補的なアプローチを提供するという考えを楽しませる。
提案するフレームワークは,人工知能システムにおいて,人間のような認知を実現するためのステップとみなすことができる。
論文 参考訳(メタデータ) (2021-02-01T00:29:01Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
本稿では,情報とアーキテクチャの制約を,確率論的モデリング文献のアイデアと組み合わせて行動の事前学習を行う方法について考察する。
このような潜伏変数の定式化が階層的強化学習(HRL)と相互情報と好奇心に基づく目的との関係について論じる。
シミュレーションされた連続制御領域に適用することで,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-27T13:17:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。