論文の概要: Learning-Driven Decision Mechanisms in Physical Layer: Facts,
Challenges, and Remedies
- arxiv url: http://arxiv.org/abs/2102.07258v1
- Date: Sun, 14 Feb 2021 22:26:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-16 17:09:46.333513
- Title: Learning-Driven Decision Mechanisms in Physical Layer: Facts,
Challenges, and Remedies
- Title(参考訳): 物理層における学習駆動決定機構--Facts, Challenges, and Remedies
- Authors: Selen Gecgel, Caner Goztepe, Gunes Karabulut Kurt, Halim Yanikomeroglu
- Abstract要約: 本稿では, 物理層に共通する仮定を, 実用システムとの相違点を強調するために紹介する。
解決策として,実装手順と課題を考慮して学習アルゴリズムを検討する。
- 参考スコア(独自算出の注目度): 23.446736654473753
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Future communication systems must include extensive capabilities as they will
embrace a vast diversity of devices and applications. Conventional physical
layer decision mechanisms may not meet these requirements due to the frequent
use of impracticable and oversimplifying assumptions that lead to a trade-off
between complexity and efficiency. By utilizing past experiences,
learning-driven designs are promising solutions to present a resilient decision
mechanism and provide a quick response even under exceptional circumstances.
The corresponding design solutions should evolve following the learning-driven
paradigms that offer increased autonomy and robustness. This evolution must
take place by considering the facts of real-world systems without restraining
assumptions. This paper introduces the common assumptions in the physical layer
to highlight their discrepancies with practical systems. As a solution,
learning algorithms are examined by considering implementation steps and
challenges. Additionally, these issues are discussed through a real-time case
study that uses software-defined radio nodes, demonstrating the potential
performance improvement. A remedial perspective is presented to guide future
studies.
- Abstract(参考訳): 将来の通信システムは、幅広いデバイスやアプリケーションを受け入れるため、広範な機能を含める必要があります。
従来の物理層決定メカニズムは、複雑さと効率のトレードオフにつながる仮定を頻繁に使うため、これらの要件を満たさないかもしれない。
過去の経験を利用することで、学習駆動設計はレジリエントな決定機構を示し、例外的な状況下でも迅速な応答を提供する有望な解決策となる。
対応する設計ソリューションは、自律性と堅牢性を高める学習駆動パラダイムに従って進化するべきです。
この進化は、仮定を抑えることなく現実世界のシステムの事実を考慮しなくてはならない。
本稿では, 物理層に共通する仮定を, 実用システムとの相違点を強調するために紹介する。
解決策として,実装手順と課題を考慮して学習アルゴリズムを検討する。
さらに、これらの問題は、ソフトウェア定義無線ノードを使用したリアルタイムケーススタディを通じて議論され、潜在的な性能改善を示す。
今後の研究を導くために、是正的な視点を提示する。
関連論文リスト
- Don't Treat the Symptom, Find the Cause! Efficient
Artificial-Intelligence Methods for (Interactive) Debugging [0.0]
現代の世界では、私たちは、より高度な洗練のシステムに常用し、活用し、交流し、頼りにしています。
本論では、モデルに基づく診断の話題を紹介し、この分野の課題を指摘し、これらの課題に対処する研究からのアプローチの選択について論じる。
論文 参考訳(メタデータ) (2023-06-22T12:44:49Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Resilient Constrained Learning [94.27081585149836]
本稿では,学習課題を同時に解決しながら,要求に適応する制約付き学習手法を提案する。
我々はこの手法を、その操作を変更することで破壊に適応する生態システムを記述する用語に因んで、レジリエントな制約付き学習と呼ぶ。
論文 参考訳(メタデータ) (2023-06-04T18:14:18Z) - OlaGPT: Empowering LLMs With Human-like Problem-Solving Abilities [19.83434949066066]
本稿では,OlaGPTと呼ばれる新しいインテリジェントなフレームワークを紹介する。
OlaGPTは認知アーキテクチャの枠組みを慎重に研究し、人間の認知の特定の側面をシミュレートすることを提案する。
このフレームワークは、注意、記憶、推論、学習、および対応するスケジューリングと意思決定メカニズムを含む、異なる認知モジュールの近似を含む。
論文 参考訳(メタデータ) (2023-05-23T09:36:51Z) - Bayesian Reinforcement Learning with Limited Cognitive Load [43.19983737333797]
適応行動の理論は、エージェントの学習履歴、決定、容量制約の間の複雑な相互作用を考慮に入れなければならない。
コンピュータ科学における最近の研究は、強化学習、ベイズ的意思決定、レート歪曲理論からアイデアをブリッジすることで、これらの力学を形作る原理を明確にし始めている。
論文 参考訳(メタデータ) (2023-05-05T03:29:34Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
「生涯学習」システムには,1)継続的学習,2)伝達と適応,3)拡張性があります。
この一連のメトリクスは、様々な複雑な生涯学習システムの開発に役立てることができることを示す。
論文 参考訳(メタデータ) (2023-01-18T21:58:54Z) - Reinforcement Learning in System Identification [0.0]
システム識別は、学習前方モデル、伝達関数、システムダイナミクスなどとも呼ばれるが、科学と工学の両方において長い伝統がある。
ここでは、この問題における強化学習の利用について考察する。
本稿では,この問題が強化学習問題として自然と音にどのように適合するかを詳述し,RLがこのような問題を解決する上で有望な手法であることを実証する実験結果を示す。
論文 参考訳(メタデータ) (2022-12-14T09:20:42Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Learning Physical Concepts in Cyber-Physical Systems: A Case Study [72.74318982275052]
本稿では,時系列データにおける物理概念の学習方法に関する研究の現状について概説する。
また,3タンクシステムの例を用いて,最先端技術から最も重要な手法を分析した。
論文 参考訳(メタデータ) (2021-11-28T14:24:52Z) - From Machine Learning to Robotics: Challenges and Opportunities for
Embodied Intelligence [113.06484656032978]
記事は、インテリジェンスが機械学習技術の進歩の鍵を握っていると主張している。
私たちは、インテリジェンスを具体化するための課題と機会を強調します。
本稿では,ロボット学習の最先端性を著しく向上させる研究の方向性を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:04:01Z) - Projection: A Mechanism for Human-like Reasoning in Artificial
Intelligence [6.218613353519724]
モデルから)トップダウン情報を利用する推論手法は、困難な状況における実体認識に有効であることが示されている。
投射は、様々な状況や困難な状況に知識を適用するという問題を解決するための鍵となるメカニズムである。
論文 参考訳(メタデータ) (2021-03-24T22:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。