論文の概要: Human-centered trust framework: An HCI perspective
- arxiv url: http://arxiv.org/abs/2305.03306v2
- Date: Mon, 15 May 2023 06:12:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 20:45:13.782123
- Title: Human-centered trust framework: An HCI perspective
- Title(参考訳): 人間中心信頼フレームワーク--HCIの視点から
- Authors: Sonia Sousa, Jose Cravino, Paulo Martins, David Lamas
- Abstract要約: この研究の理論的根拠は、現在の人工知能(AI)のユーザ信頼談話に基づいている。
我々は、AI設計におけるユーザ信頼の可能性を最大限に解き放つために、非専門家を導くためのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.6344851071810074
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rationale of this work is based on the current user trust discourse of
Artificial Intelligence (AI). We aim to produce novel HCI approaches that use
trust as a facilitator for the uptake (or appropriation) of current
technologies. We propose a framework (HCTFrame) to guide non-experts to unlock
the full potential of user trust in AI design. Results derived from a data
triangulation of findings from three literature reviews demystify some
misconceptions of user trust in computer science and AI discourse, and three
case studies are conducted to assess the effectiveness of a psychometric scale
in mapping potential users' trust breakdowns and concerns. This work primarily
contributes to the fight against the tendency to design technical-centered
vulnerable interactions, which can eventually lead to additional real and
perceived breaches of trust. The proposed framework can be used to guide system
designers on how to map and define user trust and the socioethical and
organisational needs and characteristics of AI system design. It can also guide
AI system designers on how to develop a prototype and operationalise a solution
that meets user trust requirements. The article ends by providing some user
research tools that can be employed to measure users' trust intentions and
behaviours towards a proposed solution.
- Abstract(参考訳): この研究の理論的根拠は、現在の人工知能(AI)のユーザ信頼談話に基づいている。
我々は、信頼を現在の技術の取り込み(あるいは評価)のファシリテーターとして利用する新しいHCIアプローチを作ることを目指している。
我々は、非専門家にai設計に対するユーザーの信頼の完全な可能性を解き放つためのフレームワーク(hctframe)を提案する。
3つの文献レビューから得られたデータ三角測量の結果は、コンピュータ科学とAI談話におけるユーザ信頼の誤解を解き明かし、潜在的なユーザの信頼の崩壊と懸念をマッピングする心理測定尺度の有効性を評価するために3つのケーススタディを行った。
この研究は、技術中心の脆弱な相互作用を設計する傾向との戦いに主に寄与し、最終的には、現実的で認識された信頼の侵害につながる可能性がある。
提案したフレームワークは、システム設計者に対して、ユーザ信頼と、AIシステム設計の社会倫理的、組織的ニーズと特性をマップし、定義する方法をガイドするために使用することができる。
また、AIシステムデザイナにプロトタイプの開発方法を指導し、ユーザの信頼要件を満たすソリューションを運用することも可能だ。
この記事は、提案されたソリューションに対するユーザの信頼の意図と行動を測定するために使用できる、いくつかのユーザーリサーチツールを提供することで終わる。
関連論文リスト
- Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - The impact of labeling automotive AI as "trustworthy" or "reliable" on user evaluation and technology acceptance [0.0]
本研究は,AIを「信頼できる」あるいは「信頼できる」とラベル付けすることが,自動車AI技術のユーザ認識と受容に影響を及ぼすかどうかを考察する。
この研究は、一方的なオブジェクト間の設計を用いて、478人のオンライン参加者を巻き込み、信頼できるAIまたは信頼できるAIのガイドラインを提示した。
AIを「信頼できる」とラベル付けすることは、特定のシナリオにおける判断に大きな影響を与えなかったが、使用の容易さと人間のような信頼、特に善意が増した。
論文 参考訳(メタデータ) (2024-08-20T14:48:24Z) - PADTHAI-MM: A Principled Approach for Designing Trustable,
Human-centered AI systems using the MAST Methodology [5.38932801848643]
チェックリスト評価システムであるMultisource AI Scorecard Table (MAST)は、AI対応意思決定支援システムの設計と評価におけるこのギャップに対処する。
我々は,MAST手法を用いた信頼性の高い人間中心型AIシステムを設計するための原則的アプローチを提案する。
我々は,MAST誘導設計により信頼感が向上し,MAST基準が性能,プロセス,目的情報と結びつくことを示す。
論文 参考訳(メタデータ) (2024-01-24T23:15:44Z) - A Diachronic Perspective on User Trust in AI under Uncertainty [52.44939679369428]
現代のNLPシステムは、しばしば未分類であり、ユーザの信頼を損なう確実な誤った予測をもたらす。
賭けゲームを用いて,信頼を損なう事象に対するユーザの信頼の進化について検討する。
論文 参考訳(メタデータ) (2023-10-20T14:41:46Z) - Investigating and Designing for Trust in AI-powered Code Generation Tools [15.155301866886647]
私たちは、AIコード生成ツールを適切に信頼する上での彼らの課題を理解するために、開発者にインタビューした。
我々は,開発者の信頼構築プロセスを支援する設計概念を探索する設計調査を行った。
これらの結果から,AIを利用したコード生成ツールの信頼性設計に関する設計勧告が提案されている。
論文 参考訳(メタデータ) (2023-05-18T18:23:51Z) - A Systematic Literature Review of User Trust in AI-Enabled Systems: An
HCI Perspective [0.0]
人工知能(AI)のユーザ信頼は、採用を促進する重要な要素として、ますます認識され、証明されてきている。
本総説は, ユーザ信頼の定義, 影響要因, 測定方法の概要を, 実証研究23件から明らかにすることを目的としている。
論文 参考訳(メタデータ) (2023-04-18T07:58:09Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
我々は、MATCHと呼ばれる概念モデルを開発するために、技術に対する信頼に関するコミュニケーション理論と文献から引き出す。
私たちは、AIシステムの能力として透明性とインタラクションを強調します。
我々は、技術クリエーターが使用する適切な方法を特定するのに役立つ要件のチェックリストを提案する。
論文 参考訳(メタデータ) (2022-04-29T00:14:33Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Formalizing Trust in Artificial Intelligence: Prerequisites, Causes and
Goals of Human Trust in AI [55.4046755826066]
我々は、社会学の対人信頼(すなわち、人間の信頼)に着想を得た信頼のモデルについて議論する。
ユーザとAIの間の信頼は、暗黙的あるいは明示的な契約が保持する信頼である。
我々は、信頼できるAIの設計方法、信頼が浮かび上がったかどうか、保証されているかどうかを評価する方法について論じる。
論文 参考訳(メタデータ) (2020-10-15T03:07:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。