論文の概要: Explaining the ghosts: Feminist intersectional XAI and cartography as
methods to account for invisible labour
- arxiv url: http://arxiv.org/abs/2305.03376v1
- Date: Fri, 5 May 2023 09:10:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:39:12.236414
- Title: Explaining the ghosts: Feminist intersectional XAI and cartography as
methods to account for invisible labour
- Title(参考訳): 幽霊を説明する:フェミニスト交叉xaiと地図学 : 目に見えない労働を説明する方法として
- Authors: Goda Klumbyte, Hannah Piehl, Claude Draude
- Abstract要約: ラベル付けや保守作業を含む目に見えない労働は、現代のAIシステムにとって不可欠な部分です。
これは、説明可能なAI(XAI)設計、特にフェミニストの交差点XAIによって実現可能であることを示唆する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contemporary automation through AI entails a substantial amount of
behind-the-scenes human labour, which is often both invisibilised and
underpaid. Since invisible labour, including labelling and maintenance work, is
an integral part of contemporary AI systems, it remains important to sensitise
users to its role. We suggest that this could be done through explainable AI
(XAI) design, particularly feminist intersectional XAI. We propose the method
of cartography, which stems from feminist intersectional research, to draw out
a systemic perspective of AI and include dimensions of AI that pertain to
invisible labour.
- Abstract(参考訳): 現代のAIによる自動化には、相当量の舞台裏の人間の労働が必要です。
ラベル付けや保守作業を含む目に見えない労働は、現代のAIシステムにとって不可欠な部分であるため、ユーザをその役割に感化させることは依然として重要です。
これは、説明可能なAI(XAI)設計、特にフェミニストの交差点XAIによって実現可能であることを示唆する。
本稿では,フェミニストの交叉研究に端を発するカルトグラフィー手法を提案し,AIのシステム的視点を抽出し,目に見えない労働に関連するAIの次元を含める。
関連論文リスト
- Generative AI Carries Non-Democratic Biases and Stereotypes: Representation of Women, Black Individuals, Age Groups, and People with Disability in AI-Generated Images across Occupations [0.0]
このエッセイは、生成的AIがアウトプットにエクイティ保存グループを含んでいるか、あるいは除外しているかを強調することを目的としている。
この結果から、生成的AIは性別、人種、年齢、可視性障害について公平に包括的ではないことが明らかとなった。
論文 参考訳(メタデータ) (2024-09-20T19:47:31Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Is Task-Agnostic Explainable AI a Myth? [0.0]
我々の研究は、現代の説明可能なAI(XAI)の課題を統一するための枠組みとして機能する。
我々は、XAI手法が機械学習モデルに補助的かつ潜在的に有用な出力を提供する一方で、研究者と意思決定者は、概念的および技術的な制限に留意すべきであることを示した。
本稿では,画像,テキスト,グラフデータにまたがる3つのXAI研究経路について検討する。
論文 参考訳(メタデータ) (2023-07-13T07:48:04Z) - Towards AGI in Computer Vision: Lessons Learned from GPT and Large
Language Models [98.72986679502871]
大規模言語モデル(LLM)を利用したチャットシステムが出現し、人工知能(AGI)を実現するための有望な方向へと急速に成長する
しかし、コンピュータビジョン(CV)におけるAGIへの道のりは未だに不明である。
CVアルゴリズムを世界規模で対話可能な環境に配置し、その動作に関する将来のフレームを予測するための事前トレーニングを行い、さまざまなタスクをこなすための命令で微調整するパイプラインを想像する。
論文 参考訳(メタデータ) (2023-06-14T17:15:01Z) - Aligning Robot and Human Representations [50.070982136315784]
ロボット工学における現在の表現学習アプローチは、表現アライメントの目的がいかにうまく達成されているかの観点から研究されるべきである。
問題を数学的に定義し、その鍵となるデシダータを同定し、この形式主義の中に現在の方法を置く。
論文 参考訳(メタデータ) (2023-02-03T18:59:55Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike
Common Sense [142.53911271465344]
我々は、次世代のAIは、新しいタスクを解決するために、人間のような「暗黒」の常識を取り入れなければならないと論じている。
我々は、人間のような常識を持つ認知AIの5つの中核領域として、機能、物理学、意図、因果性、実用性(FPICU)を識別する。
論文 参考訳(メタデータ) (2020-04-20T04:07:28Z) - Functionally Effective Conscious AI Without Suffering [2.017876577978849]
エンジニアリングを意識したAIの相補的な側面について論じられることはめったにない。
創造が責任のみを負うようなシステムに対する非難を避けるには、現象的な自己意識によって引き起こされる避けられない苦痛をどうやって回避するか。
論文 参考訳(メタデータ) (2020-02-13T17:59:15Z) - Questioning the AI: Informing Design Practices for Explainable AI User
Experiences [33.81809180549226]
説明可能なAI(XAI)への関心の高まりは、このトピックに関する膨大なアルゴリズム作業の収集につながった。
私たちは、説明可能なAI製品を作成するための現在のXAIアルゴリズム作業とプラクティスのギャップを特定しようとしています。
我々は,ユーザが説明責任を表現できるXAI質問バンクを開発した。
論文 参考訳(メタデータ) (2020-01-08T12:34:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。