論文の概要: AsConvSR: Fast and Lightweight Super-Resolution Network with Assembled
Convolutions
- arxiv url: http://arxiv.org/abs/2305.03387v1
- Date: Fri, 5 May 2023 09:33:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-08 14:41:04.945732
- Title: AsConvSR: Fast and Lightweight Super-Resolution Network with Assembled
Convolutions
- Title(参考訳): AsConvSR: 集合的畳み込みを伴う高速軽量超解法ネットワーク
- Authors: Jiaming Guo, Xueyi Zou, Yuyi Chen, Yi Liu, Jia Hao, Jianzhuang Liu,
Youliang Yan
- Abstract要約: リアルタイム性能を実現するために,高速かつ軽量な超解像ネットワークを提案する。
超解像における分割・畳み込みの応用を解析することにより、入力特徴に応じて畳み込みカーネルを適応できる組込み畳み込みを提案する。
NTIRE 2023 Real-Time Super-Resolution - Track 1で優勝した。
- 参考スコア(独自算出の注目度): 32.85522513271578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, videos and images in 720p (HD), 1080p (FHD) and 4K (UHD)
resolution have become more popular for display devices such as TVs, mobile
phones and VR. However, these high resolution images cannot achieve the
expected visual effect due to the limitation of the internet bandwidth, and
bring a great challenge for super-resolution networks to achieve real-time
performance. Following this challenge, we explore multiple efficient network
designs, such as pixel-unshuffle, repeat upscaling, and local skip connection
removal, and propose a fast and lightweight super-resolution network.
Furthermore, by analyzing the applications of the idea of divide-and-conquer in
super-resolution, we propose assembled convolutions which can adapt convolution
kernels according to the input features. Experiments suggest that our method
outperforms all the state-of-the-art efficient super-resolution models, and
achieves optimal results in terms of runtime and quality. In addition, our
method also wins the first place in NTIRE 2023 Real-Time Super-Resolution -
Track 1 ($\times$2). The code will be available at
https://gitee.com/mindspore/models/tree/master/research/cv/AsConvSR
- Abstract(参考訳): 近年、テレビ、携帯電話、VRなどのディスプレイデバイスでは、720p (HD)、1080p (FHD)、および4K (UHD)解像度のビデオや画像が普及している。
しかし、これらの高解像度画像は、インターネット帯域幅の制限により、期待される視覚効果を達成できず、超高解像度ネットワークがリアルタイム性能を達成するための大きな課題をもたらす。
この課題に続き、画素アンシャッフル、繰り返しアップスケーリング、ローカルスキップ接続除去といった複数の効率的なネットワーク設計を検討し、高速で軽量な超解像ネットワークを提案する。
さらに,超解像における分割・畳み込みの概念の適用性を解析することにより,入力特徴に応じて畳み込みカーネルを適応できる組込み畳み込みを提案する。
実験により,本手法はすべての高効率超解像モデルより優れ,実行時間と品質の面で最適な結果が得られることが示唆された。
さらに、ntire 2023 real-time super- resolutiontrack 1 (\times$2) で1位を獲得している。
コードはhttps://gitee.com/mindspore/models/tree/master/research/cv/AsConvSRで入手できる。
関連論文リスト
- RTSR: A Real-Time Super-Resolution Model for AV1 Compressed Content [10.569678424799616]
超解像度(SR)は、映像コンテンツの視覚的品質を改善するための重要な技術である。
リアルタイム再生をサポートするためには,高速SRモデルの実装が重要である。
本稿では,圧縮映像の視覚的品質を高めるために,低複雑さSR手法RTSRを提案する。
論文 参考訳(メタデータ) (2024-11-20T14:36:06Z) - AIM 2024 Challenge on Efficient Video Super-Resolution for AV1 Compressed Content [56.552444900457395]
ビデオスーパーレゾリューション(VSR)は、特にストリーミングアプリケーションにおいて、低ビットレートおよび低解像度ビデオを強化するための重要なタスクである。
本研究では,これらの課題に対処するために様々な手法をコンパイルし,その解決策はエンドツーエンドのビデオ超解像フレームワークである。
提案されたソリューションは、一般的なケースとして540pから4K(x4)、モバイルデバイス向けに調整された360pから1080p(x3)の2つのアプリケーションのためのビデオアップスケーリングに取り組む。
論文 参考訳(メタデータ) (2024-09-25T18:12:19Z) - Hierarchical Patch Diffusion Models for High-Resolution Video Generation [50.42746357450949]
我々は,階層的な方法で,コンテキスト情報を低スケールから高スケールのパッチに伝播する深層文脈融合を開発する。
また,ネットワーク容量の増大と,粗い画像の細部への演算を行う適応計算を提案する。
得られたモデルは、クラス条件のビデオ生成において66.32の最先端FVDスコアと87.68のインセプションスコアを新たに設定する。
論文 参考訳(メタデータ) (2024-06-12T01:12:53Z) - ConvLLaVA: Hierarchical Backbones as Visual Encoder for Large Multimodal Models [77.59651787115546]
高解像度のLMM(Large Multimodal Models)は、過度な視覚トークンと二次的な視覚的複雑さの課題に直面する。
本稿では,LMMのビジュアルエンコーダとして,階層的なバックボーンであるConvNeXtを用いるConvLLaVAを提案する。
ConvLLaVAは高解像度画像を情報豊富な視覚特徴に圧縮し、過剰な視覚トークンの発生を効果的に防止する。
論文 参考訳(メタデータ) (2024-05-24T17:34:15Z) - Towards High-Quality and Efficient Video Super-Resolution via
Spatial-Temporal Data Overfitting [27.302681897961588]
ディープ畳み込みニューラルネットワーク(DNN)はコンピュータビジョンの様々な分野で広く使われている。
高品質で効率的なビデオ解像度アップスケーリングタスクのための新しい手法を提案する。
市販の携帯電話にモデルをデプロイし,実験結果から,映像品質の高いリアルタイムビデオ解像度を実現することが確認された。
論文 参考訳(メタデータ) (2023-03-15T02:40:02Z) - QuickSRNet: Plain Single-Image Super-Resolution Architecture for Faster
Inference on Mobile Platforms [36.962828335199596]
QuickSRNetはモバイルプラットフォーム上のリアルタイムアプリケーションのための効率的な超解像度アーキテクチャである。
提案アーキテクチャは,最新のスマートフォンで2.2msで2倍のアップスケーリングによって1080pの出力を生成する。
論文 参考訳(メタデータ) (2023-03-08T02:19:54Z) - Rethinking Resolution in the Context of Efficient Video Recognition [49.957690643214576]
クロスレゾリューションKD(ResKD)は、低解像度フレームでの認識精度を高めるための単純だが効果的な方法である。
我々は,最先端アーキテクチャ,すなわち3D-CNNとビデオトランスフォーマーに対して,その効果を広く示す。
論文 参考訳(メタデータ) (2022-09-26T15:50:44Z) - ShuffleMixer: An Efficient ConvNet for Image Super-Resolution [88.86376017828773]
本稿では、大きな畳み込みとチャネル分割シャッフル操作を探索する軽量画像超解像のためのShuffleMixerを提案する。
具体的には,チャネル分割とシャッフルを基本成分とする2つのプロジェクション層を効率よく混合する。
実験結果から,ShuffleMixerはモデルパラメータやFLOPの手法に比べて約6倍小さいことがわかった。
論文 参考訳(メタデータ) (2022-05-30T15:26:52Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
畳み込みニューラルネットワーク(CNN)は画像超解像(SR)において大きな成功を収めた
ほとんどのディープCNNベースのSRモデルは、高い性能を得るために大量の計算を処理している。
SRタスクに効率的かつ効果的なダウンサンプリングモジュールを導入することで,HPUN(Hybrid Pixel-Unshuffled Network)を提案する。
論文 参考訳(メタデータ) (2022-03-16T20:10:41Z) - SwiftSRGAN -- Rethinking Super-Resolution for Efficient and Real-time
Inference [0.0]
本稿では,メモリフットプリントの高速化と小型化を実現したアーキテクチャを提案する。
リアルタイムの超解像度により、帯域幅の低い条件下でも高解像度のメディアコンテンツをストリーミングできる。
論文 参考訳(メタデータ) (2021-11-29T04:20:15Z) - Collapsible Linear Blocks for Super-Efficient Super Resolution [3.5554418329811557]
シングルイメージスーパーリゾリューション(SISR)は、コンピュータビジョンの重要な問題となっています。
超高効率超解像ネットワークの新たなクラスであるSESRを提案する。
6つのベンチマークデータセットの詳細な実験は、SESRが同様のあるいはより良い画像品質を達成することを実証している。
論文 参考訳(メタデータ) (2021-03-17T02:16:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。