論文の概要: AIM 2024 Challenge on Efficient Video Super-Resolution for AV1 Compressed Content
- arxiv url: http://arxiv.org/abs/2409.17256v1
- Date: Wed, 25 Sep 2024 18:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-30 12:52:34.849375
- Title: AIM 2024 Challenge on Efficient Video Super-Resolution for AV1 Compressed Content
- Title(参考訳): AV1圧縮コンテンツの高効率化に向けたAIM 2024の挑戦
- Authors: Marcos V Conde, Zhijun Lei, Wen Li, Christos Bampis, Ioannis Katsavounidis, Radu Timofte,
- Abstract要約: ビデオスーパーレゾリューション(VSR)は、特にストリーミングアプリケーションにおいて、低ビットレートおよび低解像度ビデオを強化するための重要なタスクである。
本研究では,これらの課題に対処するために様々な手法をコンパイルし,その解決策はエンドツーエンドのビデオ超解像フレームワークである。
提案されたソリューションは、一般的なケースとして540pから4K(x4)、モバイルデバイス向けに調整された360pから1080p(x3)の2つのアプリケーションのためのビデオアップスケーリングに取り組む。
- 参考スコア(独自算出の注目度): 56.552444900457395
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Video super-resolution (VSR) is a critical task for enhancing low-bitrate and low-resolution videos, particularly in streaming applications. While numerous solutions have been developed, they often suffer from high computational demands, resulting in low frame rates (FPS) and poor power efficiency, especially on mobile platforms. In this work, we compile different methods to address these challenges, the solutions are end-to-end real-time video super-resolution frameworks optimized for both high performance and low runtime. We also introduce a new test set of high-quality 4K videos to further validate the approaches. The proposed solutions tackle video up-scaling for two applications: 540p to 4K (x4) as a general case, and 360p to 1080p (x3) more tailored towards mobile devices. In both tracks, the solutions have a reduced number of parameters and operations (MACs), allow high FPS, and improve VMAF and PSNR over interpolation baselines. This report gauges some of the most efficient video super-resolution methods to date.
- Abstract(参考訳): ビデオスーパーレゾリューション(VSR)は、特にストリーミングアプリケーションにおいて、低ビットレートおよび低解像度ビデオを強化するための重要なタスクである。
多くのソリューションが開発されているが、高い計算要求に悩まされ、特にモバイルプラットフォームにおいて、フレームレート(FPS)が低く、電力効率が低くなる。
本研究では,これらの課題に対処するための様々な手法をコンパイルし,高パフォーマンスと低ランタイムの両方に最適化されたエンドツーエンドのリアルタイムビデオ超解像フレームワークを実現する。
また,提案手法のさらなる検証のために,高品質な4Kビデオの新たなテストセットも導入した。
提案されたソリューションは、一般的なケースとして540pから4K(x4)、モバイルデバイス向けに調整された360pから1080p(x3)の2つのアプリケーションのためのビデオアップスケーリングに取り組む。
両方のトラックでは、パラメータと操作(MAC)の削減、高いFPSの許容、補間ベースラインよりもVMAFとPSNRが改善されている。
本稿は、これまでで最も効率的なビデオ超解像法について評価する。
関連論文リスト
- Adaptive Caching for Faster Video Generation with Diffusion Transformers [52.73348147077075]
拡散変換器(DiT)はより大きなモデルと重い注意機構に依存しており、推論速度が遅くなる。
本稿では,Adaptive Caching(AdaCache)と呼ばれる,ビデオDiTの高速化のためのトレーニング不要手法を提案する。
また,AdaCache内で動画情報を利用するMoReg方式を導入し,動作内容に基づいて計算割り当てを制御する。
論文 参考訳(メタデータ) (2024-11-04T18:59:44Z) - AsConvSR: Fast and Lightweight Super-Resolution Network with Assembled
Convolutions [32.85522513271578]
リアルタイム性能を実現するために,高速かつ軽量な超解像ネットワークを提案する。
超解像における分割・畳み込みの応用を解析することにより、入力特徴に応じて畳み込みカーネルを適応できる組込み畳み込みを提案する。
NTIRE 2023 Real-Time Super-Resolution - Track 1で優勝した。
論文 参考訳(メタデータ) (2023-05-05T09:33:34Z) - Towards High-Quality and Efficient Video Super-Resolution via
Spatial-Temporal Data Overfitting [27.302681897961588]
ディープ畳み込みニューラルネットワーク(DNN)はコンピュータビジョンの様々な分野で広く使われている。
高品質で効率的なビデオ解像度アップスケーリングタスクのための新しい手法を提案する。
市販の携帯電話にモデルをデプロイし,実験結果から,映像品質の高いリアルタイムビデオ解像度を実現することが確認された。
論文 参考訳(メタデータ) (2023-03-15T02:40:02Z) - QuickSRNet: Plain Single-Image Super-Resolution Architecture for Faster
Inference on Mobile Platforms [36.962828335199596]
QuickSRNetはモバイルプラットフォーム上のリアルタイムアプリケーションのための効率的な超解像度アーキテクチャである。
提案アーキテクチャは,最新のスマートフォンで2.2msで2倍のアップスケーリングによって1080pの出力を生成する。
論文 参考訳(メタデータ) (2023-03-08T02:19:54Z) - Power Efficient Video Super-Resolution on Mobile NPUs with Deep
Learning, Mobile AI & AIM 2022 challenge: Report [97.01510729548531]
低消費電力に最適化されたモバイルNPUのためのリアルタイムビデオ超解法を提案する。
モデルは、専用のAI処理ユニットを備えた強力なMediaTek Dimensity 9000プラットフォームで評価された。
提案したすべてのソリューションは上記のNPUと完全に互換性があり、最大500FPSレートと0.2[Watt / 30FPS]電力消費を示す。
論文 参考訳(メタデータ) (2022-11-07T22:33:19Z) - Memory-Augmented Non-Local Attention for Video Super-Resolution [61.55700315062226]
低解像度(LR)ビデオから高忠実度高解像度(HR)ビデオを生成するための新しいビデオ超解法を提案する。
従来の方法は、主に時間的隣のフレームを利用して、現在のフレームの超解像を支援する。
対照的に、フレームアライメントなしでビデオの超解像を可能にするクロスフレーム非局所アテンション機構を考案する。
論文 参考訳(メタデータ) (2021-08-25T05:12:14Z) - Real-Time Video Super-Resolution on Smartphones with Deep Learning,
Mobile AI 2021 Challenge: Report [135.69469815238193]
ビデオの超高解像度化は、ビデオ通信とストリーミングサービスの台頭により、モバイル関連で最も重要な問題の一つになっている。
この問題に対処するために、私たちは、エンドツーエンドのディープラーニングベースのビデオ超解解ソリューションを開発することを目的とした、最初のMobile AIチャレンジを紹介します。
提案したソリューションは、あらゆるモバイルGPUと完全に互換性があり、高忠実度の結果を示しながら、最大80FPSのHD解像度でビデオをアップスケールすることができる。
論文 参考訳(メタデータ) (2021-05-17T13:40:50Z) - COMISR: Compression-Informed Video Super-Resolution [76.94152284740858]
ウェブやモバイルデバイスのほとんどのビデオは圧縮され、帯域幅が制限されると圧縮は厳しい。
圧縮によるアーティファクトを導入せずに高解像度コンテンツを復元する圧縮インフォームドビデオ超解像モデルを提案する。
論文 参考訳(メタデータ) (2021-05-04T01:24:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。