論文の概要: Conditional Diffusion Feature Refinement for Continuous Sign Language
Recognition
- arxiv url: http://arxiv.org/abs/2305.03614v2
- Date: Thu, 1 Jun 2023 02:23:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 23:37:03.883219
- Title: Conditional Diffusion Feature Refinement for Continuous Sign Language
Recognition
- Title(参考訳): 連続手話認識のための条件拡散特徴量補正
- Authors: Leming Guo and Wanli Xue and Qing Guo and Yuxi Zhou and Tiantian Yuan
and Shengyong Chen
- Abstract要約: シーケンス表現を洗練させるために, オートエンコーダによる条件拡散機能改善(ACDR)を提案する。
ACDRでは、シーケンス表現に意味条件を備えたノイズを段階的に付加することを提案する。
また, 雑音列表現を意味的条件で段階的に denoise するデコーダを提案する。
- 参考スコア(独自算出の注目度): 16.54395018954992
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we are dedicated to leveraging the denoising diffusion models'
success and formulating feature refinement as the autoencoder-formed diffusion
process, which is a mask-and-predict scheme. The state-of-the-art CSLR
framework consists of a spatial module, a visual module, a sequence module, and
a sequence learning function. However, this framework has faced sequence module
overfitting caused by the objective function and small-scale available
benchmarks, resulting in insufficient model training. To overcome the
overfitting problem, some CSLR studies enforce the sequence module to learn
more visual temporal information or be guided by more informative supervision
to refine its representations. In this work, we propose a novel
autoencoder-formed conditional diffusion feature refinement~(ACDR) to refine
the sequence representations to equip desired properties by learning the
encoding-decoding optimization process in an end-to-end way. Specifically, for
the ACDR, a noising Encoder is proposed to progressively add noise equipped
with semantic conditions to the sequence representations. And a denoising
Decoder is proposed to progressively denoise the noisy sequence representations
with semantic conditions. Therefore, the sequence representations can be imbued
with the semantics of provided semantic conditions. Further, a semantic
constraint is employed to prevent the denoised sequence representations from
semantic corruption. Extensive experiments are conducted to validate the
effectiveness of our ACDR, benefiting state-of-the-art methods and achieving a
notable gain on three benchmarks.
- Abstract(参考訳): 本研究は,自己エンコーダによる拡散過程をマスク・アンド・予測方式として,拡散モデルの成功と特徴改善の定式化を活用することを目的としている。
最先端のcslrフレームワークは、空間モジュール、視覚モジュール、シーケンスモジュール、シーケンス学習関数で構成される。
しかし、このフレームワークは目的関数と小規模なベンチマークによってシーケンスモジュールが過度に適合し、結果としてモデルトレーニングが不十分になった。
過度に適合する問題を克服するために、いくつかのCSLR研究はシーケンスモジュールを強制し、より視覚的な時間的情報を学ぶか、その表現を洗練させるためにより情報的な監督によってガイドされる。
本研究では,符号化-復号化最適化過程をエンドツーエンドに学習することにより,シーケンス表現を洗練し,所望の特性を付与する,新しいオートエンコーダ形式の条件拡散機能改善(ACDR)を提案する。
特に、acdrでは、シーケンス表現に意味的条件を備えたノイズを段階的に付加するノージングエンコーダが提案されている。
また, 雑音列表現を意味的条件で段階的に denoise するデコーダを提案する。
したがって、シーケンス表現は、提供された意味的条件のセマンティクスに組み込むことができる。
さらに、意味的制約を用いて、識別されたシーケンス表現が意味的腐敗を防止する。
本稿では,ACDRの有効性を検証し,最先端の手法を活かし,3つのベンチマークで顕著な利得を得た。
関連論文リスト
- Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
我々は新しいデコードパラダイムであるアンダーライン・サンダーライン・エンダーライン・アンダーライン・インダーライン・プロジェクション(LEAP)を導入する。
LEAPは、音声/視覚セグメントの符号化された潜在機能を意味的に独立したラベル埋め込みに反復的に投影する。
LEAPパラダイムを促進するために,新しい音声・視覚的類似性損失関数を含むセマンティック・アウェア・最適化戦略を提案する。
論文 参考訳(メタデータ) (2024-07-11T01:57:08Z) - Unsupervised Modality-Transferable Video Highlight Detection with Representation Activation Sequence Learning [7.908887001497406]
教師なしハイライト検出のためのクロスモーダル認識を用いた新しいモデルを提案する。
提案モデルでは,自己再構成タスクを通じて,画像と音声のペアデータから視覚レベルのセマンティクスを用いて表現を学習する。
実験結果から,提案手法は,他の最先端手法と比較して優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-03-14T13:52:03Z) - SignVTCL: Multi-Modal Continuous Sign Language Recognition Enhanced by
Visual-Textual Contrastive Learning [51.800031281177105]
SignVTCLは、視覚・テキストのコントラスト学習によって強化された連続手話認識フレームワークである。
マルチモーダルデータ(ビデオ、キーポイント、光学フロー)を同時に統合し、統一された視覚バックボーンをトレーニングする。
従来の方法と比較して最先端の結果が得られます。
論文 参考訳(メタデータ) (2024-01-22T11:04:55Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - CVT-SLR: Contrastive Visual-Textual Transformation for Sign Language
Recognition with Variational Alignment [42.10603331311837]
手話認識(SLR)は、手話ビデオにテキストグルースとして注釈をつける弱い教師付きタスクである。
近年の研究では、大規模手話データセットの欠如による訓練不足がSLRの主なボトルネックとなっている。
視覚と言語の両方のモダリティの事前訓練された知識を十分に探求するために,SLR,-SLRのための新しいコントラッシブ・ビジュアル・トランスフォーメーションを提案する。
論文 参考訳(メタデータ) (2023-03-10T06:12:36Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - DVCFlow: Modeling Information Flow Towards Human-like Video Captioning [163.71539565491113]
既存の手法は主に個々のビデオセグメントからキャプションを生成するが、グローバルな視覚的コンテキストへの適応が欠如している。
映像のシーケンスやキャプションによって変化するプログレッシブな情報をモデル化するために,情報フローの概念を導入する。
提案手法は, 競争基準を著しく上回り, 主観的, 客観的なテストにより, より人間的なテキストを生成する。
論文 参考訳(メタデータ) (2021-11-19T10:46:45Z) - Visual-aware Attention Dual-stream Decoder for Video Captioning [12.139806877591212]
現在のビデオキャプション方式の注意機構は、各フレームに重みを割り当てることを学び、デコーダを動的に推進する。
これは、シーケンスフレームで抽出された視覚的特徴の相関と時間的コヒーレンスを明示的にモデル化するものではない。
本稿では,単語の時間的シーケンスフレームの変化を前回のモーメントで統一する,新しい視覚認識注意(VA)モデルを提案する。
VADD(Visual-Aware Attention Dual-stream Decoder)の有効性を示す。
論文 参考訳(メタデータ) (2021-10-16T14:08:20Z) - Contrastive Transformation for Self-supervised Correspondence Learning [120.62547360463923]
野生のラベルのない動画を用いて,視覚的対応の自己監督学習について検討する。
本手法は,信頼性の高い対応推定のための映像内および映像間表現関連を同時に検討する。
我々のフレームワークは、近年の視覚的タスクにおける自己監督型対応手法よりも優れています。
論文 参考訳(メタデータ) (2020-12-09T14:05:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。