論文の概要: Improving Image-Based Precision Medicine with Uncertainty-Aware Causal
Models
- arxiv url: http://arxiv.org/abs/2305.03829v4
- Date: Thu, 10 Aug 2023 15:51:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-11 15:57:59.746732
- Title: Improving Image-Based Precision Medicine with Uncertainty-Aware Causal
Models
- Title(参考訳): 不確実性を考慮した因果モデルによる画像ベース精密医療の改善
- Authors: Joshua Durso-Finley, Jean-Pierre Falet, Raghav Mehta, Douglas L.
Arnold, Nick Pawlowski, Tal Arbel
- Abstract要約: ベイジアンディープラーニング(英語版)を用いて、いくつかの治療における現実的および対実的な結果に対する後部分布を推定する。
本モデルを用いて,多発性硬化症患者のMR脳画像の多施設データセットを用いて,今後新たなT2病変数を予測し,評価する。
- 参考スコア(独自算出の注目度): 3.5770353345663053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-based precision medicine aims to personalize treatment decisions based
on an individual's unique imaging features so as to improve their clinical
outcome. Machine learning frameworks that integrate uncertainty estimation as
part of their treatment recommendations would be safer and more reliable.
However, little work has been done in adapting uncertainty estimation
techniques and validation metrics for precision medicine. In this paper, we use
Bayesian deep learning for estimating the posterior distribution over factual
and counterfactual outcomes on several treatments. This allows for estimating
the uncertainty for each treatment option and for the individual treatment
effects (ITE) between any two treatments. We train and evaluate this model to
predict future new and enlarging T2 lesion counts on a large, multi-center
dataset of MR brain images of patients with multiple sclerosis, exposed to
several treatments during randomized controlled trials. We evaluate the
correlation of the uncertainty estimate with the factual error, and, given the
lack of ground truth counterfactual outcomes, demonstrate how uncertainty for
the ITE prediction relates to bounds on the ITE error. Lastly, we demonstrate
how knowledge of uncertainty could modify clinical decision-making to improve
individual patient and clinical trial outcomes.
- Abstract(参考訳): 画像に基づく精密医療は、個人の独自の画像特徴に基づいて治療決定をパーソナライズし、臨床結果を改善することを目的としている。
治療レコメンデーションの一部として不確実性推定を統合する機械学習フレームワークは、より安全で信頼性が高い。
しかし,不確実性推定手法や検証基準を精度医学に適用する作業はほとんど行われていない。
本稿では,ベイズ深層学習を用いて,いくつかの治療における実結果と偽結果の後方分布を推定する。
これにより、各治療オプションに対する不確実性や、2つの治療法間の個々の治療効果(ite)の推定が可能になる。
このモデルを用いて,多発性硬化症患者のmr脳画像の大規模多施設データセットにおけるt2病変数を予測し,ランダム化比較試験中に複数の治療を行った。
我々は,不確実性推定と事実誤差の相関性を評価し,実測結果の欠如を踏まえて,ITT予測の不確実性がITT誤差の境界とどのように関係しているかを示す。
最後に、不確実性に関する知識が、患者個人および臨床試験結果を改善するために臨床意思決定をどう変えるかを示す。
関連論文リスト
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
医療の安全性と有効性を理解するためには,観測データから因果量の推定が重要である。
医療従事者は、平均因果量の推定だけでなく、治療効果のランダム性をランダムな変数として理解する必要がある。
このランダム性はアレタリック不確実性と呼ばれ、治療効果の利益や量子化の確率を理解するために必要である。
論文 参考訳(メタデータ) (2024-11-05T18:14:49Z) - Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series [4.656302602746229]
本稿では,非現実的推定手法と不確実性定量化を組み合わせた新しい手法を提案する。
本手法は2つのシミュレーションデータセットを用いて検証し,1つは心血管系,もう1つはCOVID-19に焦点を当てた。
提案手法は, 異なる推定基準値にまたがって頑健な性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-11T13:56:25Z) - Improving Robustness and Reliability in Medical Image Classification with Latent-Guided Diffusion and Nested-Ensembles [4.249986624493547]
深層学習は高い予測精度と不確実性推定を実現することが示されている。
テスト時の入力画像のゆがみは、パフォーマンスを著しく低下させる可能性がある。
LaDiNEは,入力画像から情報および不変潜伏変数を推定できる,新規で堅牢な確率的手法である。
論文 参考訳(メタデータ) (2023-10-24T15:53:07Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Uncertainty estimations methods for a deep learning model to aid in
clinical decision-making -- a clinician's perspective [0.0]
深層学習にインスパイアされた不確実性推定技術はいくつかあるが、医療データセットに実装されているものはほとんどない。
我々は,不確かさを推定するために,ドロップアウト変動推論(DO),テスト時間拡張(TTA),共形予測,単一決定論的手法を比較した。
臨床実習にモデルを組み込む前に,複数の推定手法を評価することが重要である。
論文 参考訳(メタデータ) (2022-10-02T17:54:54Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - To Impute or not to Impute? -- Missing Data in Treatment Effect
Estimation [84.76186111434818]
我々は,MCM(Mixed Con founded missingness)と呼ばれる新しい欠損機構を同定し,ある欠損度が治療選択を判断し,他の欠損度が治療選択によって決定されることを示した。
本研究は,全てのデータを因果的に入力すると,不偏推定を行うために必要な情報を効果的に除去するので,処理効果のモデルが貧弱になることを示す。
私たちのソリューションは選択的計算であり、CMMからの洞察を使って、どの変数をインプットすべきで、どの変数をインプットすべきでないかを正確に知らせる。
論文 参考訳(メタデータ) (2022-02-04T12:08:31Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Integrating uncertainty in deep neural networks for MRI based stroke
analysis [0.0]
2次元磁気共鳴(MR)画像における脳梗塞の確率を示すベイズ畳み込みニューラルネットワーク(CNN)を提案する。
CNNは511例のコホートで、画像レベルでは95.33%の精度を達成し、非バイエルン人に比べて2%の大幅な改善を示した。
論文 参考訳(メタデータ) (2020-08-13T09:50:17Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
本研究は,医療データの分類とリスク予測のための不確実性推定の理解を深めるものである。
医療などのデータ共有分野において、モデルの予測の不確実性を測定する能力は、意思決定支援ツールの改善につながる可能性がある。
論文 参考訳(メタデータ) (2020-04-13T08:46:41Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。