論文の概要: Spiking neural networks with Hebbian plasticity for unsupervised
representation learning
- arxiv url: http://arxiv.org/abs/2305.03866v2
- Date: Wed, 10 May 2023 18:50:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 17:11:59.825849
- Title: Spiking neural networks with Hebbian plasticity for unsupervised
representation learning
- Title(参考訳): 教師なし表現学習のためのヒュービアン可塑性を持つスパイキングニューラルネットワーク
- Authors: Naresh Ravichandran, Anders Lansner, Pawel Herman
- Abstract要約: 教師なしの手順でデータから分散内部表現を学習するための新しいスパイクニューラルネットワークモデルを提案する。
オンライン相関に基づくHebbian-Bayesian学習と再配線機構を,前述した表現学習をスパイクニューラルネットワークに導入する。
我々は,非スパイクBCPNNに近い性能を示し,MNISTとF-MNISTの機械学習ベンチマークでトレーニングした場合,他のヘビーンのスパイクネットワークと競合することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel spiking neural network model for learning distributed
internal representations from data in an unsupervised procedure. We achieved
this by transforming the non-spiking feedforward Bayesian Confidence
Propagation Neural Network (BCPNN) model, employing an online correlation-based
Hebbian-Bayesian learning and rewiring mechanism, shown previously to perform
representation learning, into a spiking neural network with Poisson statistics
and low firing rate comparable to in vivo cortical pyramidal neurons. We
evaluated the representations learned by our spiking model using a linear
classifier and show performance close to the non-spiking BCPNN, and competitive
with other Hebbian-based spiking networks when trained on MNIST and F-MNIST
machine learning benchmarks.
- Abstract(参考訳): 教師なしの手順でデータから分散内部表現を学習するための新しいスパイクニューラルネットワークモデルを提案する。
本研究では,BCPNNを用いた非スパイキングフィードフォワード型ベイズ信頼伝播ニューラルネットワーク(BCPNN)モデルを用いて,前述したように表現学習を行うヘビアン・ベイズ学習再生機構を用いて,ポアソン統計と生体内皮質錐体ニューロンに匹敵する発火速度の低いスパイキングニューラルネットワークに変換した。
我々は,線形分類器を用いてスパイキングモデルで学習した表現を評価し,非スパイキングBCPNNに近い性能を示し,MNISTおよびF-MNIST機械学習ベンチマークでトレーニングしたヘビアンベースのスパイキングネットワークと競合することを示した。
関連論文リスト
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Spiking representation learning for associative memories [0.0]
本稿では、教師なし表現学習と連想記憶操作を行う新しい人工スパイクニューラルネットワーク(SNN)を提案する。
モデルの構造は新皮質列状構造から派生し,隠れた表現を学習するためのフィードフォワードプロジェクションと,連想記憶を形成するための繰り返しプロジェクションを組み合わせたものである。
論文 参考訳(メタデータ) (2024-06-05T08:30:11Z) - Topological Representations of Heterogeneous Learning Dynamics of Recurrent Spiking Neural Networks [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は神経科学と人工知能において重要なパラダイムとなっている。
近年,深層ニューラルネットワークのネットワーク表現について研究が進められている。
論文 参考訳(メタデータ) (2024-03-19T05:37:26Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Local Critic Training for Model-Parallel Learning of Deep Neural
Networks [94.69202357137452]
そこで我々は,局所的批判訓練と呼ばれる新しいモデル並列学習手法を提案する。
提案手法は,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の両方において,階層群の更新プロセスの分離に成功したことを示す。
また,提案手法によりトレーニングされたネットワークを構造最適化に利用できることを示す。
論文 参考訳(メタデータ) (2021-02-03T09:30:45Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
畳み込みニューラルネットワーク(CNN)でこの設計をインスタンス化する
実験では、標準ベンチマーク上の従来のフィードフォワードCNNに対して、CNN-Fは敵のロバスト性を大幅に改善した。
論文 参考訳(メタデータ) (2020-07-17T19:32:48Z) - Dynamic Bayesian Neural Networks [2.28438857884398]
私たちは、Hidden Markov Neural Networkと呼ばれる時間進化型ニューラルネットワークを定義します。
フィードフォワードニューラルネットワークの重みは、隠れマルコフモデルの隠れ状態によってモデル化される。
フィルタリングアルゴリズムは、重みを経る時間に進化する時間に対する変動近似を学習するために用いられる。
論文 参考訳(メタデータ) (2020-04-15T09:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。