論文の概要: Trajectory-oriented optimization of stochastic epidemiological models
- arxiv url: http://arxiv.org/abs/2305.03926v2
- Date: Mon, 24 Jul 2023 20:18:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 20:39:47.579156
- Title: Trajectory-oriented optimization of stochastic epidemiological models
- Title(参考訳): 確率的疫学モデルの軌道指向最適化
- Authors: Arindam Fadikar, Mickael Binois, Nicholson Collier, Abby Stevens, Kok
Ben Toh, Jonathan Ozik
- Abstract要約: 疫学モデルは下流のタスクの真理を正すために校正されなければならない。
我々は,トンプソンサンプリングに基づく最適化戦略とともに,ガウス過程(GP)のクラスを提案する。
この軌道指向最適化(TOO)アプローチは、経験的観測に近い実際の軌道を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epidemiological models must be calibrated to ground truth for downstream
tasks such as producing forward projections or running what-if scenarios. The
meaning of calibration changes in case of a stochastic model since output from
such a model is generally described via an ensemble or a distribution. Each
member of the ensemble is usually mapped to a random number seed (explicitly or
implicitly). With the goal of finding not only the input parameter settings but
also the random seeds that are consistent with the ground truth, we propose a
class of Gaussian process (GP) surrogates along with an optimization strategy
based on Thompson sampling. This Trajectory Oriented Optimization (TOO)
approach produces actual trajectories close to the empirical observations
instead of a set of parameter settings where only the mean simulation behavior
matches with the ground truth.
- Abstract(参考訳): 疫学モデルでは、前方の投射やwhat-ifシナリオの実行など、下流のタスクの真理を判断するために調整する必要がある。
このようなモデルからの出力は一般にアンサンブルまたは分布を介して記述されるため、確率モデルの場合の校正の意味は変化する。
アンサンブルの各メンバーは、通常ランダム数シード(明示的または暗黙的に)にマッピングされる。
入力パラメータの設定だけでなく、基底的真理と一致するランダムな種を見つけることを目的として、トンプソンサンプリングに基づく最適化戦略とともに、ガウス過程(gp)のクラスを提案する。
この軌道指向最適化(TOO)アプローチは、平均シミュレーションの振る舞いが基底真実と一致するパラメータ設定のセットではなく、経験的観測に近い実際の軌道を生成する。
関連論文リスト
- Polynomial Chaos Expanded Gaussian Process [2.287415292857564]
複雑で未知のプロセスでは、大域的モデルは最初実験空間全体にわたって生成される。
本研究では,グローバルな実験空間とローカルな実験空間の両方を効果的に表現するモデルの必要性に対処する。
論文 参考訳(メタデータ) (2024-05-02T07:11:05Z) - Sampling for Model Predictive Trajectory Planning in Autonomous Driving using Normalizing Flows [1.2972104025246092]
本稿では,軌道生成のためのサンプリング手法について検討する。
変分推論の分野を起源とする正規化フローが検討される。
学習に基づく正規化フローモデルは、入力領域のより効率的な探索のために訓練される。
論文 参考訳(メタデータ) (2024-04-15T10:45:12Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Optimizing model-agnostic Random Subspace ensembles [5.680512932725364]
教師あり学習のためのモデルに依存しないアンサンブルアプローチを提案する。
提案手法は、ランダム部分空間アプローチのパラメトリックバージョンを用いてモデルのアンサンブルを学習することとを交互に行う。
シミュレーションおよび実世界のデータセット上で,予測と特徴ランキングの両面で,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-07T13:58:23Z) - Convex Latent Effect Logit Model via Sparse and Low-rank Decomposition [2.1915057426589746]
本稿では,ロジスティック回帰モデル(logit)を学習するための凸パラメトリック凸パラメトリック定式化を提案する。
その人気にもかかわらず、個別の不均一性を学ぶための混合ロジットアプローチにはいくつかの欠点がある。
論文 参考訳(メタデータ) (2021-08-22T22:23:39Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
また, 共通最適化手法は, 問題が適度に大きい場合, 変分近似の精度が低下することを示した。
これらの結果から,基礎となるアルゴリズムをマルコフ連鎖の生成とみなして,より堅牢で正確な最適化フレームワークを開発する。
論文 参考訳(メタデータ) (2020-09-01T19:12:11Z) - Transport Gaussian Processes for Regression [0.22843885788439797]
本稿では,GP,ワープGP,学生プロセスなどを含むプロセス構築手法を提案する。
私たちのアプローチはレイヤベースのモデルにインスパイアされ、各レイヤが生成されたプロセス上で特定のプロパティを変更する。
実世界のデータを用いた実験により,提案モデルの有効性を検証した。
論文 参考訳(メタデータ) (2020-01-30T17:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。