論文の概要: Non-Local Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2005.14612v2
- Date: Sat, 11 Dec 2021 01:17:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 22:56:22.478442
- Title: Non-Local Graph Neural Networks
- Title(参考訳): 非局所グラフニューラルネットワーク
- Authors: Meng Liu, Zhengyang Wang, Shuiwang Ji
- Abstract要約: 本稿では,GNNに対する効果的な注意誘導ソート機能を備えた,シンプルで効果的な非局所集約フレームワークを提案する。
異種グラフデータセットを分析し,非局所的なGNNを評価するための徹底的な実験を行った。
- 参考スコア(独自算出の注目度): 60.28057802327858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern graph neural networks (GNNs) learn node embeddings through multilayer
local aggregation and achieve great success in applications on assortative
graphs. However, tasks on disassortative graphs usually require non-local
aggregation. In addition, we find that local aggregation is even harmful for
some disassortative graphs. In this work, we propose a simple yet effective
non-local aggregation framework with an efficient attention-guided sorting for
GNNs. Based on it, we develop various non-local GNNs. We perform thorough
experiments to analyze disassortative graph datasets and evaluate our non-local
GNNs. Experimental results demonstrate that our non-local GNNs significantly
outperform previous state-of-the-art methods on seven benchmark datasets of
disassortative graphs, in terms of both model performance and efficiency.
- Abstract(参考訳): 現代のグラフニューラルネットワーク(gnns)は、多層的な局所アグリゲーションを通じてノード埋め込みを学び、ソートグラフ上のアプリケーションで大きな成功を収める。
しかし、異種グラフのタスクは通常非局所集約を必要とする。
さらに、局所集合はいくつかの非可逆グラフに対してさらに有害である。
本稿では,gnnの効率的な注意誘導ソートを用いた,単純かつ効果的な非局所集約フレームワークを提案する。
そこで我々は,様々な非ローカルGNNを開発する。
異種グラフデータセットを分析し,非局所的なGNNを評価するための徹底的な実験を行った。
実験結果から,非局所gnnは,モデル性能と効率の両面で,7つのベンチマークデータセットで従来の最先端手法を著しく上回っていることがわかった。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels [81.93520935479984]
本稿では,ラベル付きおよび観測されたグラフに基づいて学習した特定のGNNモデルの性能を評価することを目的とした,新しい問題であるGNNモデル評価について検討する。
本稿では,(1) DiscGraph セット構築と(2) GNNEvaluator トレーニングと推論を含む2段階の GNN モデル評価フレームワークを提案する。
DiscGraphセットからの効果的なトレーニング監督の下で、GNNEvaluatorは、評価対象であるGNNモデルのノード分類精度を正確に推定することを学ぶ。
論文 参考訳(メタデータ) (2023-10-23T05:51:59Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
本稿では,ローカル類似性(LocalSim)を用いて,プラグイン・アンド・プレイモジュールとしても機能するノードレベルの重み付き融合を学習する。
そこで本研究では,より情報性の高いマルチホップ情報を抽出するための,新規かつ効率的な初期残留差分接続(IRDC)を提案する。
提案手法,すなわちローカル類似グラフニューラルネットワーク(LSGNN)は,ホモ親和性グラフとヘテロ親和性グラフの両方において,同等あるいは優れた最先端性能を提供できる。
論文 参考訳(メタデータ) (2023-05-07T09:06:11Z) - Revisiting Heterophily For Graph Neural Networks [42.41238892727136]
グラフニューラルネットワーク(GNN)は、関係帰納バイアスに基づくグラフ構造を用いて基本ニューラルネットワーク(NN)を拡張する(ホモフィリー仮定)
最近の研究は、NNと比較してパフォーマンスが不十分な、非自明なデータセットのセットを特定している。
論文 参考訳(メタデータ) (2022-10-14T08:00:26Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
我々はGeodesic GNN(GDGNN)と呼ばれる効率的なGNNフレームワークを提案する。
ラベル付けなしでノード間の条件付き関係をモデルに注入する。
ジオデシック表現を前提としたGDGNNは、通常のGNNよりもはるかにリッチな構造情報を持つノード、リンク、グラフ表現を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T02:02:35Z) - On Local Aggregation in Heterophilic Graphs [11.100606980915144]
我々は,従来のGNNと多層パーセプトロンを適切に調整した手法が,ヘテロ親和性グラフ上の最近の長距離アグリゲーション手法の精度に適合しているか,あるいは超越しているかを示す。
本稿では,新しい情報理論グラフ計量であるNativeborhood Information Content(NIC)メトリックを提案する。
論文 参考訳(メタデータ) (2021-06-06T19:12:31Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。