Deformable 3D Shape Diffusion Model
- URL: http://arxiv.org/abs/2407.21428v1
- Date: Wed, 31 Jul 2024 08:24:42 GMT
- Title: Deformable 3D Shape Diffusion Model
- Authors: Dengsheng Chen, Jie Hu, Xiaoming Wei, Enhua Wu,
- Abstract summary: We introduce a novel deformable 3D shape diffusion model that facilitates comprehensive 3D shape manipulation.
We demonstrate state-of-the-art performance in point cloud generation and competitive results in mesh deformation.
Our method presents a unique pathway for advancing 3D shape manipulation and unlocking new opportunities in the realm of virtual reality.
- Score: 21.42513407755273
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Gaussian diffusion model, initially designed for image generation, has recently been adapted for 3D point cloud generation. However, these adaptations have not fully considered the intrinsic geometric characteristics of 3D shapes, thereby constraining the diffusion model's potential for 3D shape manipulation. To address this limitation, we introduce a novel deformable 3D shape diffusion model that facilitates comprehensive 3D shape manipulation, including point cloud generation, mesh deformation, and facial animation. Our approach innovatively incorporates a differential deformation kernel, which deconstructs the generation of geometric structures into successive non-rigid deformation stages. By leveraging a probabilistic diffusion model to simulate this step-by-step process, our method provides a versatile and efficient solution for a wide range of applications, spanning from graphics rendering to facial expression animation. Empirical evidence highlights the effectiveness of our approach, demonstrating state-of-the-art performance in point cloud generation and competitive results in mesh deformation. Additionally, extensive visual demonstrations reveal the significant potential of our approach for practical applications. Our method presents a unique pathway for advancing 3D shape manipulation and unlocking new opportunities in the realm of virtual reality.
Related papers
- AnimateMe: 4D Facial Expressions via Diffusion Models [72.63383191654357]
Recent advances in diffusion models have enhanced the capabilities of generative models in 2D animation.
We employ Graph Neural Networks (GNNs) as denoising diffusion models in a novel approach, formulating the diffusion process directly on the mesh space.
This facilitates the generation of facial deformations through a mesh-diffusion-based model.
arXiv Detail & Related papers (2024-03-25T21:40:44Z) - Neural Point Cloud Diffusion for Disentangled 3D Shape and Appearance Generation [29.818827785812086]
Controllable generation of 3D assets is important for many practical applications like content creation in movies, games and engineering, as well as in AR/VR.
We present a suitable representation for 3D diffusion models to enable disentanglement by introducing a hybrid point cloud and neural radiance field approach.
arXiv Detail & Related papers (2023-12-21T18:46:27Z) - Pushing the Limits of 3D Shape Generation at Scale [65.24420181727615]
We present a significant breakthrough in 3D shape generation by scaling it to unprecedented dimensions.
We have developed a model with an astounding 3.6 billion trainable parameters, establishing it as the largest 3D shape generation model to date, named Argus-3D.
arXiv Detail & Related papers (2023-06-20T13:01:19Z) - Locally Attentional SDF Diffusion for Controllable 3D Shape Generation [24.83724829092307]
We propose a diffusion-based 3D generation framework, to model plausible 3D shapes, via 2D sketch image input.
Our method is built on a two-stage diffusion model. The first stage, named occupancy-diffusion, aims to generate a low-resolution occupancy field to approximate the shape shell.
The second stage, named SDF-diffusion, synthesizes a high-resolution signed distance field within the occupied voxels determined by the first stage to extract fine geometry.
arXiv Detail & Related papers (2023-05-08T05:07:23Z) - Generative Novel View Synthesis with 3D-Aware Diffusion Models [96.78397108732233]
We present a diffusion-based model for 3D-aware generative novel view synthesis from as few as a single input image.
Our method makes use of existing 2D diffusion backbones but, crucially, incorporates geometry priors in the form of a 3D feature volume.
In addition to generating novel views, our method has the ability to autoregressively synthesize 3D-consistent sequences.
arXiv Detail & Related papers (2023-04-05T17:15:47Z) - MeshDiffusion: Score-based Generative 3D Mesh Modeling [68.40770889259143]
We consider the task of generating realistic 3D shapes for automatic scene generation and physical simulation.
We take advantage of the graph structure of meshes and use a simple yet very effective generative modeling method to generate 3D meshes.
Specifically, we represent meshes with deformable tetrahedral grids, and then train a diffusion model on this direct parametrization.
arXiv Detail & Related papers (2023-03-14T17:59:01Z) - Neural Wavelet-domain Diffusion for 3D Shape Generation, Inversion, and
Manipulation [54.09274684734721]
We present a new approach for 3D shape generation, inversion, and manipulation, through a direct generative modeling on a continuous implicit representation in wavelet domain.
Specifically, we propose a compact wavelet representation with a pair of coarse and detail coefficient volumes to implicitly represent 3D shapes via truncated signed distance functions and multi-scale biorthogonal wavelets.
We may jointly train an encoder network to learn a latent space for inverting shapes, allowing us to enable a rich variety of whole-shape and region-aware shape manipulations.
arXiv Detail & Related papers (2023-02-01T02:47:53Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - 3D Shape Generation and Completion through Point-Voxel Diffusion [24.824065748889048]
We propose a novel approach for probabilistic generative modeling of 3D shapes.
Point-Voxel Diffusion (PVD) is a unified, probabilistic formulation for unconditional shape generation and conditional, multimodal shape completion.
PVD can be viewed as a series of denoising steps, reversing the diffusion process from observed point cloud data to Gaussian noise, and is trained by optimizing a variational lower bound to the (conditional) likelihood function.
arXiv Detail & Related papers (2021-04-08T10:38:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.